Organic Letters
Letter
or conversion. Thus, D2O quench of the reaction of 1a with 2a
at 15 min reaction time gave a 47% yield of 5aa/6aa (1/99)
and a 29% yield of 5aa/6aa (93/7) with binap and cod ligands,
respectively. The 5aa/6aa ratios are essentially the same as
those observed in entries 1 and 2 in Table 1. The organozincs
3 and 4 generated by the reaction of alkyne 2 with an excess
amount of ArZnCl 1 do not go back to the catalytic cycle
shown in Scheme 2 in the presence of excess 1, although both
Rh/binap and Rh/cod catalyze the isomerization of 3 to 4 in
the absence of ArZnCl 1 (eq 1).
REFERENCES
■
(1) For reviews on catalytic carbometalation of alkynes: (a) Mur-
akami, K.; Yorimitsu, H. Beilstein J. Org. Chem. 2013, 9, 278.
(b) Lorthiois, E.; Meyer, C. Carbozincation of Alkenes and Alkynes.
Patai’s Chemistry of Functional Groups; Wiley: New York, 2009.
(c) Itami, K.; Yoshida, J.-I. Carbomagnesiation Reactions. In The
Chemistry of Organomagnesium Compounds; Rappoport, Z., Marek, I.,
Eds.; Wiley: Chichester, 2008; pp 631−679. (d) Negishi, E.-I.;
Huang, Z.-H.; Wang, G.-W.; Mohan, S.; Wang, C.; Hattori, H. Acc.
Chem. Res. 2008, 41, 1474. (e) Flynn, A. B.; Ogilvie, W. W. Chem. Rev.
2007, 107, 4698.
(2) Ni catalyst: (a) Duboudin, J. G.; Jousseaume, B.; Saux, A. J.
Organomet. Chem. 1978, 162, 209. (b) Xue, F.; Zhao, J.; Hor, T. S. A.
Chem. Commun. 2013, 49, 10121. (c) Xue, F.; Zhao, J.; Hor, T. S. A.;
Hayashi, T. J. Am. Chem. Soc. 2015, 137, 3189. Mn catalyst:
(d) Yorimitsu, H.; Tang, J.; Okada, K.; Shinokubo, H.; Oshima, K.
Chem. Lett. 1998, 27, 11. Fe or Fe/Cu catalyst: (e) Shirakawa, E.;
Yamagami, T.; Kimura, T.; Yamaguchi, S.; Hayashi, T. J. Am. Chem.
Soc. 2005, 127, 17164. (f) Yamagami, T.; Shintani, R.; Shirakawa, E.;
Hayashi, T. Org. Lett. 2007, 9, 1045. Cr catalyst: (g) Murakami, K.;
Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 1569. Ag
catalyst: (h) Kambe, N.; Moriwaki, Y.; Fujii, Y.; Iwasaki, T.; Terao, J.
Org. Lett. 2011, 13, 4656.
In summary, we have disclosed that the addition of arylzinc
reagents ArZnCl to unfunctionalized alkynes is efficiently
catalyzed by rhodium complexes in the presence of a catalytic
amount of zinc chloride. One of the divergent pathways in
giving 2-arylalkenylzincs or ortho-alkenylarylzincs, the latter of
which are generated through 1,4-Rh migration from alkenyl to
aryl in the catalytic cycle, is chosen by use of the appropriate
ligands on rhodium.
(3) Ni catalyst: (a) Stu
Ed. Engl. 1997, 36, 93. (b) Stu
̈
demann, T.; Knochel, P. Angew. Chem., Int.
demann, T.; Ibrahim-Ouali, M.;
̈
Knochel, P. Tetrahedron 1998, 54, 1299. Co catalyst: (c) Murakami,
K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2009, 11, 2373. (d) Corpet,
M.; Gosmini, C. Chem. Commun. 2012, 48, 11561. (e) Murakami, K.;
Yorimitsu, H.; Oshima, K. Chem. - Eur. J. 2010, 16, 7688.
(f) Nishikawa, T.; Yorimitsu, H.; Oshima, K. Synlett 2004, 1573.
(g) Yasui, H.; Nishikawa, T.; Yorimitsu, H.; Oshima, K. Bull. Chem.
Soc. Jpn. 2006, 79, 1271.
ASSOCIATED CONTENT
(4) (a) Gourdet, B.; Lam, H. W. J. Am. Chem. Soc. 2009, 131, 3802.
(b) Gourdet, B.; Rudkin, M. E.; Watts, C. A.; Lam, H. W. J. Org.
Chem. 2009, 74, 7849.
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(5) (a) Tan, B.-H.; Dong, J.; Yoshikai, N. Angew. Chem., Int. Ed.
2012, 51, 9610. See also: (b) Tan, B.-H.; Yoshikai, N. Org. Lett.
2014, 16, 3392. (c) Wu, J.; Yoshikai, N. Angew. Chem., Int. Ed. 2016,
55, 336. (d) Yan, J.; Yoshikai, N. Org. Chem. Front. 2017, 4, 1972.
(6) For reviews dealing with 1,4-metal shift, see: (a) Croisant, M. F.;
van Hoveln, R.; Schomaker, J. M. Eur. J. Org. Chem. 2015, 2015, 5897.
(b) Shi, F.; Larock, R. C. Top. Curr. Chem. 2009, 292, 123. (c) Miura,
T.; Murakami, M. Chem. Commun. 2007, 217. (d) Ma, S.; Gu, Z.
Angew. Chem., Int. Ed. 2005, 44, 7512.
(7) For 1,4-Rh shift from alkenyl to aryl, see: (a) Hayashi, T.; Inoue,
K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem. Soc. 2001, 123, 9918.
(b) Miura, T.; Sasaki, T.; Nakazawa, H.; Murakami, M. J. Am. Chem.
Soc. 2005, 127, 1390. (c) Shintani, R.; Takatsu, K.; Hayashi, T. Angew.
Chem., Int. Ed. 2007, 46, 3735. (d) Shintani, R.; Isobe, S.; Takeda, M.;
Hayashi, T. Angew. Chem., Int. Ed. 2010, 49, 3795. (e) Sasaki, K.;
Nishimura, T.; Shintani, R.; Kantchev, E. A. B.; Hayashi, T. Chem. Sci.
2012, 3, 1278. (f) Sasaki, K.; Hayashi, T. Tetrahedron: Asymmetry
2012, 23, 373.
(8) For examples of other types of 1,4-Rh shift, see: (a) Oguma, K.;
Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem. Soc. 2000, 122,
10464. (b) Matsuda, T.; Shigeno, M.; Murakami, M. J. Am. Chem. Soc.
2007, 129, 12086. (c) Panteleev, J.; Menard, F.; Lautens, M. Adv.
Synth. Catal. 2008, 350, 2893. (d) Seiser, T.; Roth, O. A.; Cramer, N.
Angew. Chem., Int. Ed. 2009, 48, 6320. (e) Shigeno, M.; Yamamoto,
T.; Murakami, M. Chem. - Eur. J. 2009, 15, 12929. (f) Seiser, T.;
Cramer, N. Chem. - Eur. J. 2010, 16, 3383. (g) Seiser, T.; Cramer, N.
Angew. Chem., Int. Ed. 2010, 49, 10163. (h) Matsuda, T.; Suda, Y.;
Takahashi, A. Chem. Commun. 2012, 48, 2988. (i) Yu, H.; Wang, C.;
Yang, Y.; Dang, Z.-M. Chem. - Eur. J. 2014, 20, 3839. (j) Shintani, R.;
Iino, R.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 7849. (k) Hepburn,
H. B.; Lam, H. W. Angew. Chem., Int. Ed. 2014, 53, 11605. (l) Sawano,
T.; Hashizume, M.; Nishimoto, S.; Ou, K.; Nishimura, T. Org. Lett.
2015, 17, 2630. (m) Ming, J.; Hayashi, T. Org. Lett. 2016, 18, 6452.
Experimental procedures, compound characterization
data, and crystallographic data (PDF)
Accession Codes
CCDC 1813165 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by funding from Nanyang
Technological University and the Singapore Ministry of
Education (AcRF MOE 2016-T1-001-247 and 2017-T2-1-
064).
D
Org. Lett. XXXX, XXX, XXX−XXX