C O M M U N I C A T I O N S
F8T2 and polythiophenes. It is likely that OFET performance can
be further improved via optimization of polymer Mw and film
deposition/processing conditions.
Acknowledgment. We thank ONR (N00014-02-1-0909), the
NSF-MRSEC program through the Northwestern Materials Re-
search Center (DMR-0076097), and the NASA Institute for
Nanoelectronics and Computing (NCC 2-3163) for support.
Supporting Information Available: Polymers 1-6 syntheses/
spectroscopic data and FET device fabrication. Figures S1-S8. This
Figure 1. BS8T2-based FETs. (A) Transfer plots before (dotted line) and
after film annealing (solid line). (B) Output plot of an annealed device. (C)
ON-OFF cycles (0.03 Hz) under ambient conditions for the annealed device
at VDS ) -50 V for different gate biases.
References
Note that the λmax values of silole-based polymers 3 and 4 are
red-shifted by ∼40-50 nm versus fluorene-based analogues 5 and
6, demonstrating Si σ*-orbital involvement in the π-conjugation.
Furthermore, note that 1 f 3 and 2 f 4 λmax trends reflect both
the effects of the π electron-donating S atom versus simple -Cd
C- and the more planar conformation of five-five versus five-six
inter-ring linkages in contributing to the large bathochromic shifts
[40-50 nm (THF), 60-90 nm (film)]. Thus, the polymer band gaps
(Table 1) are found on average to decrease going from 5, 6 (2.4-
2.6 eV) to 3, 4 (2.3-2.5 eV) to 1, 2 (1.8-2.0 eV).
(1) (a) Vardeny, Z. V., Heeger, A. J., Dodabalapur, A., Eds. Summary of the
Fundamental Research Needs in Organic Electronic Materials; Elsevier:
Amsterdam, 2005. (b) Mu¨llen, K., Wegner, G., Eds. Electronic Materi-
als: The Oligomer Approach; Wiley-VCH: New York, 1998. (c)
Skotheim, T. A., Elsenbaumer, R. L., Reynolds, J. R., Eds. Handbook of
ConductiVe Polymers; Marcel Dekker: New York, 1998.
(2) (a) Barbarella, G.; Melucci, M.; Sotgiu, G. AdV. Mater. 2005, 17, 1581.
(b) Katz, H. E. Chem. Mater. 2004, 16, 4748. (c) Ponce Ortiz, R.; Ruiz
Delgado, M. C.; Casado, J.; Hernandez, V.; Kim, O.-K.; Woo, H. Y.;
Lopez Navarrete, J. T. J. Am. Chem. Soc. 2004, 126, 13363. (d) Reddinger,
J. L.; Reynolds, J. R. AdV. Polym. Sci. 1999, 145. (e) Handbook of Oligo-
and Polythiophenes; Fichou, D., Ed.; Wiley-VCH: Weinheim, Germany,
1999.
OFETs were fabricated as described in Supporting Information
with semiconductor films deposited by spin-coating from THF (1
and 2) or 1,2,4-trichlorobenzene (3-6) solutions. That good OFET
response is achieved using low-boiling THF12 is unprecedented and
appears to reflect the substantial microstructural ordering (vide
infra). After spin-coating and before Au contact deposition, the films
were annealed at 230-250 °C for 30 min under N2. Annealing
significantly improves device performance as shown in Figure 1A
for BS8T2. Output/transfer plots for 1-6 are shown in Figures 1
and S4-6.
(3) (a) Zhan, X.; Risko, C.; Amy, F.; Chan, C.; Zhao, W.; Barlow, S.; Kahn,
A.; Bredas, J.-L.; Marder, S. R. J. Am. Chem. Soc. 2005, 127, 9021. (b)
Risko, C.; Kushto, G. P.; Kafati, Z. H.; Bredas, J. L. J. Chem. Phys. 2004,
121, 9031. (c) Yamaguchi, S.; Tamao, K. J. Chem. Soc., Dalton Trans.
1998, 3693.
(4) Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. J.
Am. Chem. Soc. 1996, 118, 11974.
(5) (a) Tamao, K.; Yamaguchi, S.; Shiozaki, M.; Nakagawa, Y.; Ito, Y. J.
Am. Chem. Soc. 1992, 114, 5867. (b) Salzner, U.; Lagowski, J. B.; Pickup,
P. G.; Poirier, R. A. Synth. Met. 1998, 96, 177.
(6) (a) Chan, K. L.; McKiernan, M. J.; Towns, C. R.; Holmes, A. B. J. Am.
Chem. Soc. 2005, 127, 7662. (b) Kim, W.; Palilis, L. C.; Uchida, M.;
Kafafi, Z. H. Chem. Mater. 2004, 16, 4681. (c) Liu, M. S.; Luo, J.; Jen,
A. K.-Y. Chem. Mater. 2003, 15, 3496. (d) Murata, H.; Kafafi, Z. H.;
Uchida, M. Appl. Phys. Lett. 2002, 80, 189.
Polymers TS6T1 (1) and TS6T2 (2) exhibit high saturation hole
carrier mobilities of ∼ 0.02 and 0.06 cm2/Vs, respectively, and Ion:
Ioff > 105 when measured in air (Figure S4). This is remarkable
considering the modest molecular weights and is likely a conse-
quence of the high degree of microstructural order as supported by
film X-ray diffraction data (Figure S7). Spin-coated or solution-
cast films of regioregular polythiophenes, such as P3HT and PQT,
but not F8T2, are known to self-organize into π-stacked/edge-on
lamellar structures parallel to the HMDS-SiO2 substrate normal,
resulting in very efficient charge transport.13 Bithiophene-based
polymers BS8T2 (4) and F8T2 (6) also exhibit appreciable field-
effect mobilities (∼0.006 cm2/Vs) and Ion:Ioff ratios (>106 and >105,
respectively). The FET parameters for F8T2 are very similar to
literature values for unaligned films.14 Note that OFETs based on
silole-based polymers TS6T2 (Figure S8) and BS8T2 (Figure 1C)
can be ON-OFF cycled repeatedly under ambient conditions at
different VG values with negligible degradation of output charac-
teristics, demonstrating impressive stability. When deposited and
annealed under similar conditions, BS8T1 (3) and F8T1 (5) exhibit
far lower performance (µ ∼ 10-4 cm2/Vs and Ion:Ioff ∼ 105),
probably the combined result of lower π-conjugation and poor
crystallinity, verified by film XRD.
In conclusion, four new silolearene copolymers have been
synthesized and characterized in OFET devices. Carrier mobilities
approaching 0.1 cm2/Vs and Ion:Ioff > 105-106 have been achieved
for unaligned films. To better study and understand their physico-
chemical/OFET properties, the fluorenyl analogues F8T1 and F8T2
were also synthesized. The results clearly demonstrate that silole-
arene copolymer films are highly textured and can exhibit sub-
stantial hole mobilities and Ion:Ioff ratios, rivalling those of
comparably processed and more widely investigated/optimized
(7) (a) Wang, F.; Luo, J.; Yang, K.; Chen, J.; Huang, F.; Cao, Y.
Macromolecules 2005, 38, 2253. (b) Mi, B.; Dong, Y.; Li, Z.; Lam, J.
W. Y.; Haeussler, M.; Sung, H. H. Y.; Kwok, H. S.; Dong, Y.; Williams,
I. D.; Liu, Y.; Luo, Y.; Shuai, Z.; Zhu, D.; Tang, B. Z. Chem. Commun.
2005, 3583.
(8) (a) Locklin, J.; Roberts, M.; Mannsfeld, S.; Bao, Z. J. Macromol. Sci.,
Polym. ReV. 2006, 46, 79. (b) Facchetti, A.; Yoon, M.-H.; Marks, T. J.
AdV. Mater. 2005, 17, 1705. (c) Sirringhaus, H. AdV. Mater. 2005, 17,
2411. (d) Katz, H. E. Electroanalysis 2004, 16, 1837. (e) Horowitz, G. J.
Mater. Res. 2004, 19, 1946. (f) Newman, C. R.; Frisbie, C. D.; da Silva
Filho, D. A.; Bredas, J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater.
2004, 16, 4436. (g) Chabinyc, M. L.; Salleo, A. Chem. Mater. 2004, 16,
4509. (h) Rogers, J. A.; Bao, Z.; Katz, H. E.; Dodabalapur, A. In Thin-
Film Transistors; Kagan, C. R., Andry, P., Eds.; Marcel Dekker: New
York, 2003; p 377. (i) Dimitrakopoulos, C. D.; Malenfant, P. R. L. AdV.
Mater. 2002, 14, 99.
(9) OFET performance was modest (µFET ∼ 10-6 cm2/Vs, Ion:Ioff < 10). See:
(a) Kim, D.-H.; Ohshita, J.; Lee, K.-H.; Kunugi, Y.; Kunai, A. Organo-
metallics 2006, 25, 1511. (b) Ohshita, J.; Lee, K.-H.; Hamamoto, D.;
Kunugi, Y.; Ikadai, J.; Kwak, Y.-W.; Kunai, A. Chem. Lett. 2004, 33,
892. (c) Wang, Y.; Hou, L.; Yang, K.; Chen, J.; Wang, F.; Cao, Y.
Macromol. Chem. Phys. 2005, 206, 2190.
(10) (a) Lee, K. H.; Ohshita, J.; Kunai, A. Organometallics 2004, 23, 5481.
(b) Ohshita, J.; Nodono, M.; Kai, H.; Watanabe, T.; Kunai, A.; Komaguchi,
K.; Shiotani, M.; Adachi, A.; Okita, K.; Harima, Y.; Yamashita, K.;
Ishikawa, M. Organometallics 1999, 18, 1453.
(11) Lim, E.; Jung, B.-J.; Lee, J.; Shim, H.-K.; Lee, J.-I.; Yang, Y. S.; Do,
L.-M. Macromolecules 2005, 38, 4531.
(12) Chang, J. F.; Sun, B. Q.; Breiby, D. W.; Nielsen, M. M.; Solling, T. I.;
Giles, M.; McCulloch, I.; Sirringhaus, H. Chem. Mater. 2004, 16, 4772.
(13) (a) Kim, D. H.; Han, J. T.; Park, Y. D.; Jang, Y.; Cho, J. H.; Hwang, M.;
Cho, K. AdV. Mater. 2006, 18, 719. (b) Joseph, K. R.; McGehee, M. D.;
Toney, M. Nat. Mater. 2006, 5, 222. (c) DeLongchamp, D. M.;
Sambasivan, S.; Fischer, D. A.; Lin, E. K.; Chang, P.; Murphy, A. R.;
Frechet, J. M. J.; Subramanian, V. AdV. Mater. 2005, 17, 2340. (d) Ong,
B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.
(e) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard,
K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer,
E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685.
(14) Chua, L.; Zaumseil, J.; Chang, J.; Ou, C.-W. E.; Ho, K.-H. P.; Sirringhaus,
H.; Friend, H. R. Nature 2005, 434, 194.
JA062908G
9
J. AM. CHEM. SOC. VOL. 128, NO. 28, 2006 9035