Inorganic Chemistry
Article
(2) Stefanoski, S.; Martin, J.; Nolas, G. S. J. Phys.: Condens. Matter
2010, 22, 485404.
(3) Yamanaka, S.; Horie, H.; Nakano, H.; Ishikawa, M. Fullerene Sci.
Thus the decrease in the electron−phonon coupling strength in
Ba8−δNix□ySi46−x−y originates from the Ni-content-dependent
variations in the electronic band structure.25 A decrease in Tc is
a feature shared by all ternary type-I clathrates investigated so
far showing that alloying on either the Ba or Si site tends to
suppress superconductivity. However, the variation in Tc
strongly depends on the substituting element as found out in
several studies on Ba8MxSi46−x for M = Ge,6 Ga,7 or Cu.8
Although a superconducting state still develops in the Ge- and
Ga-substituted systems up to x = 25 and x = 10, respectively, a
lower Cu content of x = 4 is sufficient to drop Tc from 8 K
down to 2.9 K. In the present case, Ni has a stronger influence
since the superconductivity disappears for x ≥ 2.4.
Technol. 1995, 3, 21−28.
(4) Kawaji, H.; Horie, H.; Yamanaka, S.; Ishikawa, M. Phys. Rev. Lett.
1995, 74, 1427−1429.
(5) Yamanaka, S.; Enishi, E.; Fukuoka, H.; Yasukawa, M. Inorg. Chem.
2000, 39, 56−58.
(6) Fukuoka, H.; Kiyoto, J.; Yamanaka, S. J. Solid State Chem. 2003,
175, 237−244.
(7) Li, Y.; Zhang, R. H.; Liu, Y.; Chen, N.; Luo, Z. P.; Ma, X. Q.; Cao,
G. H.; Feng, Z. S.; Hu, C. R.; Ross, J. H. Phys. Rev. B 2007, 75, 054513.
(8) Li, Y.; Liu, Y.; Chen, N.; Cao, G. H.; Feng, Z. S.; Ross, J. H. Phys.
Lett. A 2005, 345, 398−408.
(9) Kamakura, N.; Nakano, T.; Ikemoto, Y.; Usuda, M.; Fukuoka, H.;
Yamanaka, S.; Shin, S.; Kobayashi, K. Phys. Rev. B 2005, 72, 014511.
(10) Kuznetsov, V. L.; Kuznetsova, L. A.; Kaliazin, A. E.; Rowe, D. M.
J. Appl. Phys. 2000, 87, 7871−7875.
(11) Bentien, A.; Nishibori, E.; Paschen, S.; Iversen, B. B. Phys. Rev. B
2005, 71, 144107.
(12) Blake, N. P.; Bryan, D.; Latturner, S.; Mollnitz, L.; Stucky, G. D.;
Metiu, H. J. Chem. Phys. 2001, 114, 10063−10074.
(13) Kleinke, H. Chem. Mater. 2010, 22, 604−611.
(14) Nolas, G. S.; Slack, G. A.; Schujman, S. B., Semiconductor
clathrates: A phonon glass electron crystal material with potential for
thermoelectric applications. In Semiconductors and Semimetals; Terry,
M. T., Ed.; Elsevier: Amsterdam, 2001; Vol. 69, Chapter 6, pp 255−
300.
(15) Rowe, D. M. CRC Handbook of Thermoelectrics; CRC Press:
Boca Raton, FL, 1995.
(16) Snyder, G. J.; Toberer, E. S. Nat. Mater. 2008, 7, 105−114.
(17) Johnsen, S.; Bentien, A.; Madsen, G. K. H.; Nygren, M.; Iversen,
B. B. Phys. Rev. B 2007, 76, 245126.
(18) Bentien, A.; Johnsen, S.; Iversen, B. B. Phys. Rev. B 2006, 73,
094301.
(19) Jaussaud, N.; Gravereau, P.; Pechev, S.; Chevalier, B.; Menetrier,
́ ́
M.; Dordor, P.; Decourt, R.; Goglio, G.; Cros, C.; Pouchard, M. C. R.
Chim. 2005, 8, 39−46.
4. CONCLUSIONS
The homogeneity range of the clathrate-I phase
Ba8Nix□ySi46−x−y was determined to be 2.4 ≤ x ≤ 3.8 and 0
≤ y ≤ 0.9 at 1000 °C. The experimental result is in agreement
with the heat of formation calculations. Reinvestigation of the
crystal structure showed that the clathrate-I phase contains
framework vacancies increasing in number with Ni content
reaching up to y ≈ 0.9 for x = 3.7. For all compositions, XANES
investigations indicate that the electronic state of the Ni atoms
is close to that of the element. The electronic transport
behavior of all samples exhibits metallic-like behavior with
moderate thermopower values at high temperatures. The
thermal conductivity values for all compositions are low as in
other clathrate phases. A maximum ZT value of around 0.1 was
obtained at 700 K for the sample with x = 3.8. The metastable
clathrate phase Ba8−δNixSi46−x was prepared by steel-quenching
and shows superconducting transition with onset temperatures
at 6.0 and 5.5 K for x = 1.4 and 1.6, respectively.
ASSOCIATED CONTENT
■
S
(20) Aydemir, U.; Candolfi, C.; Ormeci, A.; Oztan, Y.; Baitinger, M.;
Oeschler, N.; Steglich, F.; Grin, Yu. Phys. Rev. B 2011, 84, 195137.
(21) Cordier, G.; Woll, P. J. Less Common Met. 1991, 169, 291−302.
(22) Fukuoka, H.; Kiyoto, J.; Yamanaka, S. Inorg. Chem. 2003, 42,
2933−2937.
* Supporting Information
X-ray crystallographic data in CIF format, X-ray powder
patterns, DSC results, SEM images, tables of crystallographic
data, atomic coordinates, displacement parameters, site
occupancies, and interatomic distances. This material is
(23) Toulemonde, P.; Adessi, C.; Blase, X.; San Miguel, A.; Tholence,
J. L. Phys. Rev. B 2005, 71, 094504.
(24) Liang, Y.; Bohme, B.; Reibold, M.; Schnelle, W.; Schwarz, U.;
̈
AUTHOR INFORMATION
Baitinger, M.; Lichte, H.; Grin, Yu. Inorg. Chem. 2011, 50, 4523−4528.
(25) Candolfi, C.; Aydemir, U.; Ormeci, A.; Baitinger, M.; Oeschler,
N.; Steglich, F.; Grin, Yu. Phys. Rev. B 2011, 83, 205102.
(26) Aydemir, U.; Candolfi, C.; Borrmann, H.; Baitinger, M.; Ormeci,
A.; Carrillo-Cabrera, W.; Chubilleau, C.; Lenoir, B.; Dauscher, A.;
Oeschler, N.; Steglich, F.; Grin, Yu. Dalton Trans. 2010, 39, 1078−
1088.
■
Corresponding Author
351-46464000.
Notes
The authors declare no competing financial interest.
(27) Akselrud, L. G.; Zavalii, P. Y.; Grin, Yu.; Pecharsky, V. K.;
Baumgartner, B.; Wolfel, E. Mater. Sci. Forum 1993, 335, 133−136.
̈
ACKNOWLEDGMENTS
■
(28) Koepernik, K.; Eschrig, H. Phys. Rev. B 1999, 59, 1743−1757.
(29) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244−13249.
(30) Kittel, C., Introduction to Solid State Physics, 7th ed.; Wiley: New
York, 1996; p 23.
The authors acknowledge Petra Scheppan, Monika Eckert,
Renate Hempel-Weber, and members of the Kompetenzgruppe
Struktur for providing experimental support. C.C. acknowl-
edges the financial support of the CNRS-MPG program. M.B.
and Y.G. gratefully acknowledge financial support by the
Deutsche Forschungsgemeinschaft (SPP 1415, “Kristalline
(31) Goebel, T.; Prots, Y.; Haarmann, F. Z. Kristallogr. NCS 2009,
224, 7−8.
(32) Rabadanov, M. K.; Ataev, M. B. Crystallogr. Rep. 2002, 47, 33−
38.
Nichtgleichgewichtsphasen (KNG) - Praparation, Charakter-
isierung und in situ-Untersuchung der Bildungsmechanismen”).
̈
(33) Ackerbauer, S.; Krendelsberger, N.; Weitzer, F.; Hiebl, K.;
Schuster, J. C. Intermetallics 2009, 17, 414−420.
(34) Massalski, T. B., Binary Alloy Phase Diagram, 2nd ed.; ASM
International: Materials Park, OH, 1990; pp 613−615.
(35) Massalski, T. B. Binary Alloy Phase Diagrams. 2nd ed.; ASM
International: Materials Park, OH, 1990; pp 2859−2861.
REFERENCES
■
(1) Kasper, J. S.; Hagenmuller, P.; Pouchard, M.; Cros, C. Science
1965, 150, 1713−1714.
4740
dx.doi.org/10.1021/ic2027626 | Inorg. Chem. 2012, 51, 4730−4741