a
Table 3 Application to a range of epoxides
Notes and references
1
(a) H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland
and I. Wright, J. Environ. Sci., 2008, 20, 14–27; (b) The 2010 BP
statistical review of world energy (http://www.bp.com/
statisticalreview).
2
3
D. P. Schrag, Science, 2007, 315, 812–813.
P. H. M. Feron and C. A. Hendriks, Oil Gas Sci. Technol., 2005,
6
0, 451–459.
T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 2007, 107,
365–2387.
4
2
5
6
M. Aresta and A. Dibenedetto, Dalton Trans., 2007, 2975–2992.
R. Angamuthu, P. Byers, M. Lutz, A. L. Spek and E. Bouwman,
Science, 2010, 327, 313–315.
7
8
V. Serini, ‘‘Polycarbonates’’, in Ullmann’s Encyclopedia of
Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
D. R. Moore, M. Cheng, E. B. Lobkovsky and G. W. Coates,
Angew. Chem., 2002, 114, 2711–2714 (Angew. Chem., Int. Ed.,
2
002, 41, 2599).
9
J. Yoo, S. J. Na, H. C. Park, A. Cyriac and B. Y. Lee, Dalton
Trans., 2010, 39, 2622–2630.
1
0 M. North, R. Pasquale and C. Young, Green Chem., 2010, 12,
514–1539.
1
1
1 For some recent reviews and articles on high pressure and/or
temperature approaches to cyclic carbonates see: (a) I. Omae,
Catal. Today, 2006, 115, 33–52; (b) J. H. Clements, Ind. Eng.
Chem. Res., 2003, 42, 663–674; (c) M. Yoshida and M. Ihara,
Chem.–Eur. J., 2004, 10, 2886–2893; (d) R. Srivastava,
T. H. Bennur and D. Srinivas, J. Mol. Catal. A: Chem., 2005,
2
26, 199–205; (e) R. Zevenhoven, S. Eloneva and S. Teir, Catal.
Today, 2006, 115, 73–79; (f) T. Sakakura and K. Kohno, Chem.
Commun., 2009, 1312–1330; (g) J. Sun, S.-i. Fujita and M. Arai,
J. Organomet. Chem., 2005, 690, 3490–3497; (h) W.-L. Dai,
S.-L. Luo, S.-F. Yin and C.-T. Au, Appl. Catal., A, 2009, 366,
a
2 4
General conditions: CO , Cu cathode, Mg anode, Bu NBr (2.0 equiv.),
MeCN, single compartment cell, 60 mA, 6 h 50 1C, isolated yields shown
are after column chromatography. Reaction ran for 8 h.
2
–12; (i) R. L. Paddock and S. T. Nguyen, J. Am. Chem. Soc.,
2001, 123, 11498–11499.
2 (a) J. Melendez, M. North and R. Pasquale, Eur. J. Inorg. Chem.,
007, 3323–3326; (b) M. North and R. Pasquale, Angew. Chem.,
009, 121, 2990–2992 (Angew. Chem., Int. Ed., 2009, 48,
946–2948); (c) J. Melendez, M. North and P. Villuendas, Chem.
b
1
´
2
2
2
´
Commun., 2009, 2577–2579; (d) M. North, P. Villuendas and
C. Young, Chem.–Eur. J., 2009, 11454–11457; (e) W. Clegg,
R. W. Harrington, M. North and R. Pasquale, Chem.–Eur. J.,
2010, 16, 6828–6843; (f) I. S. Metcalfe, M. North, R. Pasquale and
A. Thursfield, Energy Environ. Sci., 2010, 3, 212–215.
1
3 P. C. B. Page, F. Marken, C. Williamson, Y. Chan, B. R. Buckley
and D. Bethell, Adv. Synth. Catal., 2008, 350, 1149–1154.
1
4 (a) A. A. Tahir and K. G. U. Wijayantha, J. Photochem. Photo-
biol., A, 2010, 216, 119–125; (b) A. A. Tahir, K. G. U. Wijayantha,
S. Saremi-Yarahmadi, M. Mazhar and V. McKee, Chem. Mater.,
Scheme 2 Elecrocarboxylation of (S)-styrene oxide to afford the
enantiomerically pure cyclic carbonate with retention of configuration.
2009, 21, 3763–3772; (c) K. Tennakone, G. R. R. A. Kumara, K.
G. U. Wijayantha, I. R. M. Kottegoda, V. P. S. Perera and M. L.
P. Aponsu, J. Photochem. Photobiol., A, 1997, 108, 175–177.
˜
5 (a) P. Tascedda and E. Dunach, J. Chem. Soc., Chem. Commun.,
approaches that allow this reaction to proceed at atmospheric
1,15
1
1
pressure and at ambient-mild temperatures.
The yields
1
995, 43–44; (b) E. Dunach, P. Tascedda, M. Weidmann and
˜
obtained are comparable or better than those already reported
in the area and our approach benefits from not employing an
additional catalyst into the reaction, which in some cases can
be toxic or expensive. The equipment required to perform this
E. Dinjus, Appl. Organomet. Chem., 2001, 15, 141–144.
6 Y. Wang, G.-Q. Yuan, Y.-C. Zeng and H.-F. Jiang, Chin. J. Org.
Chem., 2007, 27, 1397–1400.
1
1
7 Epoxides dissolved in molten TBAB/TBAI have been converted
into cyclic carbonates under atmospheric pressure carbon dioxide,
but at elevated temperatures (120 1C): see V. Calo, A. Nacci,
A. Monopoli and A. Fanizzi, Org. Lett., 2002, 4, 2561–2563.
8 For example, isomerisation of the epoxide to ketone and aldehydes
2
CO incorporation reaction is cheap and should be readily
available in any undergraduate teaching facility i.e. copper
wire, magnesium ribbon and a power supply. We are currently
looking at the mechanism (early indications show that it does
1
or addition of H
X.-D. Yue, F. Cai and L.-N. He, Catal. Commun., 2007, 8,
67–172.
19 GC-MS and H, C NMR data revealed only the reaction
products and Bu NBr.
2
20 In an independent reaction addition of MgBr to the reaction
2
O to afford the ring opened diol: see J.-Q. Wang,
2
0
1
not involve MgBr
2
but may well be related to that postulated
21
1
13
12e
by North and co-workers) and scalability of this process
4
as well as applications of CO incorporation towards other
2
types of organic molecules and the development of a self-
contained solar driven process.
without electrolysis resulted in complete recovery of starting
materials.
1 The electrode materials required for large scale applications are
currently commercially available. Mg anodes are used in the
protection of ship hulls. See for example: http://www.corrpro.co.
uk/pdf/Anodes/Magnesium/Magnesium-Anodes.pdf.
2
B.R.B. and K.G.U.W. would like to thank Research Councils
UK for RCUK fellowships and Loughborough University for
funding a PhD studentship to A.P.P.
1
1890 Chem. Commun., 2011, 47, 11888–11890
This journal is c The Royal Society of Chemistry 2011