Bioconjugate Chemistry
ARTICLE
is tethered to a solid support via the tin leaving group. Exposing
the polymer-bound organotin precursor to electrophilic radio-
iodine releases the radiolabeled prosthetic group into solution,
with the unreacted organotin precursor and organotin bypro-
ducts remaining bound to the resin. This approach thus simplifies the
process of radiolabeling of proteins and peptides via the conjugate
radiolabeled group approach by reducing the need for postiodina-
tion purification of the prosthetic group prior to conjugating it to
biological macromolecules. By avoiding the need for HPLC, the
quantity of radioactive waste generated in the labeling process is also
greatly reduced. This solid-phase approach may have additional
applications for development of a simple kit formulation for radio-
chemical labeling of protein and peptide molecules or for develop-
ment of automated radiolabeling processes.
(8) Zalutsky, M. R., and Narula, A. S. (1987) A method for the
radiohalogenation of proteins resulting in decreased thyroid uptake of
radioiodine. Appl. Radiat. Isot. 38, 1051–1055.
(9) Wilbur, D. S., Hadley, S. W., Hylarides, M. D., Abrams, P. G.,
Beaumier, P. A., Morgan, A. C., Reno, J. M., and Fritzberg, A. R. (1989)
Development of a stable radioiodinating reagent to label monoclonal-
antibodies for radiotherapy of cancer. J. Nucl. Med. 30, 216–226.
(10) Zalutsky, M. R., and Narula, A. S. (1988) Radiohalogenation of
a monoclonal-antibody using an N-succinimidyl 3-(tri-n-butylstan-
nyl)benzoate intermediate. Cancer Res. 48, 1446–1450.
(11) Moerlein, S. M., Mathis, C. A., and Yano, Y. (1987) Compara-
tive evaluation of electrophilic aromatic iododemetallation techniques
for labeling radiopharmaceuticals with iodine-122. Int. J. Rad. Appl.
Instrum. A 38, 85–90.
(12) Harrington, C. F., Eigendorf, G. K., and Cullen, W. R. (1996)
The use of high-performance liquid chromatography for the speciation
of organotin compounds. Appl. Organomet. Chem. 10, 339–362.
(13) Neumann, W. P. (1992) Tin for organic-synthesis 0.6. the new
role of organotin reagents in organic-synthesis 0.1. stannyl groups as
leaving groups in electrophilic substitutions 0.2. polymer-supported
organotin reagents for organic-synthesis. J. Organomet. Chem. 437, 23–
39.
(14) Hernan, A. G., Horton, P. N., Hursthouse, M. B., and Kilburn,
J. D. (2006) New and efficient synthesis of solid-supported organotin
reagents and their use in organic synthesis. J. Organomet. Chem. 691,
1466–1475.
(15) Zhu, X. Z., Blough, B. E., and Carroll, F. I. (2000) Synthesis and
reactions of a novel chlorostannane resin: coupling with functionalized
organozinc halides. Tetrahedron Lett. 41, 9219–9222.
(16) Hunter, D. H., and Zhu, X. Z. (1999) Polymer-supported
radiopharmaceuticals: [131I]MIBG and [123I]MIBG. J. Label. Compd.
Radiopharm. 42, 653–661.
(17) Vaidyanathan, G., Affleck, D. J., Alston, K. L., Zhao, X. G., Hens,
M., Hunter, D. H., Babich, J., and Zalutsky, M. R. (2007) A kit method
for the high level synthesis of [211At]MABG. Bioorg. Med. Chem. 15,
3430–3436.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
analytical characterization of organotin and peptide chromato-
graphic standards. ESI-MS analysis for an example of a solution-
phase iododestannylation reaction and from cold (unlabled)
iodination of resin (4). HPLC radiochromatograms from high-
activity radioiodination of resin (5) and from conjugation of (7)
to an aminoglycoside compound. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
*Corresponding author. Dr. A. N. Gifford, Medical Department,
Brookhaven National Laboratory, Upton, NY 11973. Tel 631-
(18) Kabalka, G. W., Namboodiri, V., and Akula, M. R. (2001)
Synthesis of 123I labeled Congo Red via solid phase organic chemistry.
J. Label. Compd. Radiopharm. 44, 921–929.
(19) Spivey, A. C., Tseng, C. C., Jones, T. C., Kohler, A. D., and
Ellames, G. J. (2009) A method for parallel solid-phase synthesis of
iodinated analogues of the CB1 receptor inverse agonist Rimonabant.
Org. Lett. 11, 4760–4763.
(20) Yong, L., Yao, M. L., Green, J. F., Kelly, H., and Kabalka, G. W.
(2010) Syntheses and characterization of polymer-supported organotri-
fluoroborates: applications in radioiodination reactions. Chem. Commun.
46, 2623–2625.
(21) Donovan, A., Forbes, J., Dorff, P., Schaffer, P., Babich, J., and
Valliant, J. F. (2006) A new strategy for preparing molecular imaging and
therapy agents using fluorine-rich (fluorous) soluble supports. J. Am.
Chem. Soc. 128, 3536–3537.
’ ACKNOWLEDGMENT
Funded by the DOE office of biological and environmental
research and performed under Brookhaven Science Associates
contract No. DE-AC02-98CH1-886 with the U. S. Department
of Energy. The authors would like to thank Dr. S. Kim for
valuable advice and for collecting NMR data on the compounds.
’ REFERENCES
(1) Bolton, R. (2002) Radiohalogen incorporation into organic
systems. J. Label. Compd. Radiopharm. 45, 485–528.
(2) Adam, M. J., and Wilbur, D. S. (2005) Radiohalogens for imaging
and therapy. Chem. Soc. Rev. 34, 153–163.
(3) Yamada, A., Traboulsi, A., Dittert, L. W., and Hussain, A. A. (2000)
Chloramine-T in radiolabeling techniques - III. Radioiodination of biomo-
lecules containing thioether groups. Anal. Biochem. 277, 232–235.
(4) Crim, J. W., Garczynski, S. F., and Brown, M. R. (2002)
Approaches to radioiodination of insect neuropeptides. Peptides 23,
2045–2051.
(5) Garg, P. K., Alston, K. L., and Zalutsky, M. R. (1995) Catabolism
of radioiodinated murine monoclonal-antibody F(Ab0)2 fragment la-
beled using N-succinimidyl 3-iodobenzoate and iodogen methods.
Bioconjugate Chem. 6, 493–501.
(22) Donovan, A. C., and Valliant, J. F. (2009) Fluorous isocyanates:
convenient synthons for the preparation of radioiodinated compounds
in high effective specific activity. J. Org. Chem. 74, 8133–8138.
(23) Pearce, G., Strydom, D., Johnson, S., and Ryan, C. A. (1991) A
polypeptide from tomato leaves induces wound-inducible proteinase-
inhibitor proteins. Science 253, 895–898.
(6) Nestor, M., Persson, M., Cheng, J. P., Tolmachev, V., van
Dongen, G., Anniko, M., and Kairemo, K. (2003) Biodistribution of
the chimeric monoclonal antibody U36 radioiodinated with a closo-
dodecaborate-containing linker. Comparison with other radioiodination
methods. Bioconjugate Chem. 14, 805–810.
(7) Wilbur, D. S. (1992) Radiohalogenation of proteins - an over-
view of radionuclides, labeling methods, and reagents for conjugate
labeling. Bioconjugate Chem. 3, 433–470.
412
dx.doi.org/10.1021/bc1004203 |Bioconjugate Chem. 2011, 22, 406–412