Wei et al.
Synthesis, Characterization and Performance of P3HT-Azide-PCBM Microgel
Table I. Photovoltaic performance of the device based on P3HT-
azide-PCBM:PCBM, P3HT:P3HT-azide-PCBM:PCBM and P3HT:PCBM
under the illumination of AM 1.5G, 100 mW/cm2.
9. E. Klimov, W. Li, X. Yang, G. G. Hoffmann, and J. Loos,
Macromolecules 39, 4493 (2006).
10. H. Zhong, X. Yang, B. deWith, and J. Loos, Macromolecules 39, 218
(2005).
11. M. Drees, H. Hoppe, C. Winder, H. Neugebauer, N. S. Sariciftci,
W. Schwinger, F. Schaffler, C. Topf, M. C. Scharber, Z. Zhu, and
R. Gaudiana, J. Mater. Chem. 15, 5158 (2005).
12. S. Miyanishi, K. Tajima, and K. Hashimoto, Macromolecules
42, 1610 (2009).
Voc
(V)
Jsc
(mA/cm2ꢃ
FF
(%)
PCE
(%)
Samples
P3HT-azide-PCBM:PCBM
P3HT:P3HT-azide-PCBM:PCBM 0.626
P3HT:PCBM 0.635
0.627
1.41
5.26
5.73
30.7 0ꢇ272
64.6 2ꢇ11
69.7 2ꢇ53
13. H. J. Kim, A. R. Han, C.-H. Cho, H. Kang, H.-H. Cho, M. Y. Lee,
J. M. J. Fréchet, J. H. Oh, and B. J. Kim, Chem. Mater. 24, 215
(2011).
14. B. J. Kim, Y. Miyamoto, B. Ma, and J. M. J. Fréchet, Adv. Funct.
Mater. 19, 2273 (2009).
P3HT-azide-PCBM is a chemical cross-linked spherical
microgel, and its chain mobility is largely reduced in the
active layer.
15. B. Gholamkhass and S. Holdcroft, Chem. Mater. 22, 5371 (2010).
16. D. Jia, J.-F. Yang, H. Cheng, and C. C. Han, Acta Polym. Sin. 5, 564
(2015).
17. R. S. Loewe, S. M. Khersonsky, and R. D. McCullough, Adv. Mater.
11, 250 (1999).
18. Z. Gu, Y. Tan, K. Tsuchiya, T. Shimomura, and K. Ogino, Polymers
3, 558 (2011).
19. Y. Huang, X. Guo, F. Liu, L. Huo, Y. Chen, T. P. Russell, C. C. Han,
Y. Li, and J. Hou, Adv. Mater. 24, 3383 (2012).
20. X. Yang and J. Loos, Macromolecules 40, 1353 (2007).
21. J. Roncali, Chem. Rev. 92, 711 (1992).
4. CONCLUSIONS
In summary, the synthesis, characterization, optical and
photovoltaic properties of a cross-linkable P3HT-azide-
PCBM microgel are reported. P3HT-azide-PCBM is syn-
thesized by introducing an azide cross-linkable group into
the conjugated polymer. Compared with P3HT/PCBM
blend, the absorption band of P3HT-azide-PCBM shifts
blue greatly and its fluorescence intensity is deeply
quenched. According to DLS measurement, in o-DCB
solution, the P3HT-azide-PCBM copolymer is not a poly-
mer chain, but a chemical cross-linked spherical micro-
gel. The spherical shape of P3HT-azide-PCBM has large
influence on its photovoltaic performance because the hole
mobility in the polythiophene chains is reduced.
22. S. Xiao, S. Wang, H. Fang, Y. Li, Z. Shi, C. Du, and D. Zhu,
Macromol. Rapid Comm. 22, 1313 (2001).
23. B. Gholamkhass, T. J. Peckham, and S. Holdcroft, Polym. Chem.
1, 708 (2010).
24. M. H. van der Veen, B. de Boer, U. Stalmach, K. I. van de Wetering,
and G. Hadziioannou, Macromolecules 37, 3673 (2004).
25. G. Wei, D. Yao, Z. Li, Y. Huang, H. Cheng, and C. C. Han,
Delivered by Ingenta to: McMaster University
Macromolecules 46, 1212 (2013).
IP: 185.71.3.155 On: Fri, 06 May 2016 07:14:10
Copyright: American S2c6i.enMt.ifiÁc. PHuerbralnisz,hBe.rsIllescas, N. Martín, C. Luo, and D. M. Guldi,
Notes
J. Org. Chem. 65, 5728 (2000).
The authors declare no competing financial interest.
27. R. T. Sanderson, Chemistry 41, 368 (1949).
28. Y. Huang, H. Cheng, and C. C. Han, Macromolecules 44, 5020
(2011).
29. C. Wu, A. Niu, Y. Zhao, C. Li, and Y. Yang, Macromol. Rapid
Comm. 22, 704 (2001).
30. H. Cheng and G. Z. Zhang, Hydrogel Micro and Nanoparticles,
edited by L. A. Lyon and M. J. Serpe, Wiely-VCH, Germany (2012),
Vol. 1, p. 1.
31. C. J. Hawker, Macromolecules 27, 4836 (1994).
32. H. Hoppe and N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
33. X. Yang, J. K. J. van Duren, R. A. J. Janssen, M. A. J. Michels, and
J. Loos, Macromolecules 37, 2151 (2004).
34. A. Swinnen, I. Haeldermans, M. vande Ven, J. D’Haen,
G. Vanhoyland, S. Aresu, M. D’Olieslaeger, and J. Manca, Adv.
Funct. Mater. 16, 760 (2006).
35. X. Yang, J. K. J. van Duren, M. T. Rispens, J. C. Hummelen, R. A. J.
Janssen, M. A. J. Michels, and J. Loos, Adv. Mater. 16, 802 (2004).
36. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energ. Mat. Sol. C
92, 686 (2008).
Acknowledgments: This work is supported by the
National Natural Scientific Foundation of China (Grant
No. 21174152), the Innovation Project of the Institute
of High Energy Physics CAS (2015IHEPYJRC901), and
Capital (Beijing) Science and Technology Resources Plat-
form (Z131110000613065).
References and Notes
1. K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).
2. M. S. Ramasamy, S. S. Mahapatra, and J. W. Cho, J. Nanosci.
Nanotechnol. 14, 7553 (2014).
3. G. Yu, J. Gao, J. Hummelen, F. Wudl, and A. Heeger, Science
270, 1789 (1995).
4. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger,
T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).
5. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim,
K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc. 130, 3619
(2008).
37. Y.-J. Cheng, C.-H. Hsieh, P.-J. Li, and C.-S. Hsu, Adv. Funct. Mater.
21, 1723 (2011).
38. Y. Zhang, K. Tajima, K. Hirota, and K. Hashimoto, J. Am. Chem.
Soc. 130, 7812 (2008).
39. B. C. Thompson, B. J. Kim, D. F. Kavulak, K. Sivula, C. Mauldin,
and J. M. J. Fréchet, Macromolecules 40, 7425 (2007).
40. K. Tajima, Y. Suzuki, and K. Hashimoto, J. Phys. Chem. C 112, 8507
(2008).
6. J.-F. Qu, J. Liu, and Z.-Y. Xie, Chinese J. Polym. Sci. 31, 815 (2013).
7. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct.
Mater. 15, 1617 (2005).
8. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk,
J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett.
5, 579 (2005).
Received: 12 December 2014. Accepted: 28 January 2015.
J. Nanosci. Nanotechnol. 16, 5639–5645, 2016
5645