et al. / Inorganica Chimica Acta 363 (2010) 1092–1096
C. Crisóstomo
1096
[6] S.C. Roy, P. Dutta, L.N. Nandy, S.K. Roy, P. Samuel, S.M. Pillai, V.K. Kaushik, M.
Ravindranathan, Appl. Catal. A 290 (2005) 175.
[7] (a) A. Cappelli, A. Mancini, F. Sudati, S. Valenti, M. Anzini, S. Belloli, R.M.
Moresco, M. Matarresse, M. Vaghi, A. Fabro, F. Fazio, S. Vomero, Bioconjug.
Chem. 19 (2008) 1143;
ide produced after 6 h, after work-up: 68% of a white crystalline so-
lid (0.0771 g, 0.052 mmol). Yield of 2-cyanopyridine-6-carboxam-
ide produced after 12 h, after work-up: 37% of a white crystalline
solid (0.042 g, 0.28 mmol). Yield of 2-cyanopyridine-6-carboxam-
ide produced after 36 h, after work-up: 11% of a white crystalline
solid (0.012 g, 0.081 mmol). Yield of 2-cyanopyridine-6-carboxam-
ide produced after 72 h, after work-up: 9% of a white crystalline so-
lid (0.0104 g, 0.068 mmol). Yield of 2-cyanopyridine-6-
carboxamide produced after 120 h, after work-up: 6% of a white
crystalline solid (0.0064 g, 0.043 mmol). M.p. of 2-cyanopyridine-
6-carboxamide: >200 °C (sublimes). NMR spectra for 2-cyanopyri-
dine-6-carboxamide in DMSO-d6: 1H, d 8.8–8.2 (m, 3H, CH), 7.7 (s,
br, 2H, NH2). 13C{1H}, d 164.5 (carbonyl), 151.8 (s, C), 139.7 (s, CH),
131.4 (s, C), 131.3 (s, CH), 125.8 (s, CH), 117.1 (s, CN). IR (KBr disc,
cmꢀ1): 3399 and 3201 (NH2), 2238 (CN), 1709 (carbonyl), 836–450
(Ar). Yield of 2,6-pyridinedicarboxamide produced after 6 h, after
work-up: 30% of a white crystalline solid (0.0383 g, 0.023 mmol).
Yield of 2,6-pyridinedicarboxamide produced after 12 h, after
work-up: 48% of a white crystalline solid (0.060 g, 0.38 mmol).
Yield of 2,6-pyridinedicarboxamide produced after 36 h, after
work-up: 55% of a white crystalline solid (0.070 g, 0.42 mmol).
Yield of 2,6-pyridinedicarboxamide produced after 72 h, after
work-up: 65% of a white crystalline solid (0.0829 g, 0.50 mmol).
Yield of 2,6-pyridinedicarboxamide produced after 120 h, after
work-up: 82% of a white crystalline solid (0.1051 g, 0.63 mmol).
M.p. of 2,6-pyridinedicarboxamide: >250 °C (sublimes). Anal. Calc.
for C7H7N3O2 (2,6-pyridinedicarboxamide): C, 50.9; H, 4.2; N, 25.4.
Found: C, 50.2; H, 4.3; N, 24.6. NMR spectra for 2,6-pyridinedicarb-
oxamide in DMSO-d6: 1H, d 8.8 (br s, H, NH2), 8.2–8.1 (m, 3H, CH),
7.7 (br s, H, NH2). 13C{1H}, d 165.6 (carbonyl), 149.1 (s, C), 139.4 (s,
CH), 124.4 (s, CH). IR (KBr disc, cmꢀ1): 3420 and 3244 (NH2), 1686
(carbonyl), 843–548 (Ar).
(b) A. Mai, D. Rotili, D. Tarantino, P. Ornaghi, F. Tosi, C. Vicidomini, G. Sbardella,
A. Nebbioso, M. Miceli, L. Altucci, P. Filetici, J. Med. Chem. 49 (2006) 6907;
(c) Z. Ma, Y. Hano, T. Nomura, Y. Chen, Bioorg. Med. Chem. Lett. 14 (2004)
1193;
(d) V. Monga, A. Nayyar, B. Vaitilingam, P.B. Palde, S.S. Jhamb, S. Kaur, P.P.
Singh, R. Jain, Bioorg. Med. Chem. 12 (2004) 6465;
(e) C. Papageorgiou, A. von Matt, J. Joergensen, E. Andersen, K. Wagner, C.
Beerli, T. Than, X. Borer, A. Florineth, G. Rihs, M.H. Schreirer, G. Weckbecker, C.
Heusser, J. Med. Chem. 44 (2001) 1986.
[8] K.L. Breno, M.D. Pluth, D.R. Tyler, Organometallics 22 (2003) 1203.
[9] (a) T. Oshiki, H. Yamashita, K. Sawada, M. Utsunomiya, K. Takahashi, K. Takai,
Organometallics 24 (2005) 6287;
(b) F. Fagalde, G.M. Mellace, N.L. De Katz, N.E. Katz, J. Coord. Chem. 57 (2004)
635.
[10] A. Goto, K. Endo, S. Saito, Angew. Chem. Int. Ed. 47 (2008) 3607.
[11] T. Ghaffar, A.W. Parkins, J. Mol. Catal. A, Chem. 160 (2000) 249.
[12] (a) F. Bazi, H.E. Badaoui, S. Tamani, S. Sokori, A. Solhy, D.J. Macquarrie, S. Sebti,
Appl. Catal. A 301 (2006) 211;
(b) K. Yamaguchi, M. Matsuchita, N. Mizuno, Angew. Chem. Int. Ed. 43 (2004)
1576;
(c) B.M. Khadilkar, V.R. Madyar, Indian J. Chem., Sec. B 42B (2003) 2814;
(d) A. Solhy, A. Smahi, B. Elaabar, A. Amoukal, A. Tikad, S. Sebti, W.D.
Macquarrie, Tetrahedron Lett. 44 (2003) 4031;
(e) B.M. Khadilkar, V.R. Madyar, Synth. Commun. 32 (2002) 1731;
(f) K.-T. Liu, M.-H. Shih, H.-W. Huang, C.-J. Hu, Synthesis (1988) 715;
(g) K. Watanabe, K. Sakai, Bull. Chem. Soc. Jpn. 39 (1966) 8;
(h) K. Watanabe, Bull. Chem. Soc. Jpn. 37 (1964) 1325.
[13] For a recent revision on the use of nitrile-converting enzymes, consult: (a) L.
Martínková, V. Mylerová, Curr. Org. Chem. 7 (2003) 1279;
. For punctual examples on the use of enzymes for the hydration of 2-, 3- and
4-cyanopyridines, consult:(b) V. Vejvoda, O. Sveda, O. Kaplan, V. Prikrylova, V.
Elisakova, M. Himl, D. Kubac, H. Pelantova, M. Kuzma, V. Kren, L. Martínková,
Biotechnol. Lett. 29 (2007) 1119;
(c) O. Kaplan, K. Nikolaou, A. Pisvejcova, L. Martínková, Enzyme Microbiol.
Technol. 38 (2006) 260;
ˇ
´
(d) I. Prepechalová, L. Martínková, A. Stolz, M. Ovesná, K. Bezouška, J. Kopecky,
ˇ
V. Kren, Appl. Microbiol. Biotechnol. 55 (2001) 150;
(e) M. Wieser, K. Takeuchi, Y. Wada, H. Yamada, T. Nagasawa, FEMS Microbiol.
Lett. 169 (1998) 17;
(f) C.D. Mathew, T. Nagasawa, M. Kobayashi, H. Yamada, Appl. Environ.
Microbiol. 54 (1988) 1030;
Acknowledgements
(g) T. Nagasawa, C.D. Mathew, J. Mauger, H. Yamada, Appl. Environ. Microbiol.
54 (1988) 1766;
We thank CONACYT (Grant 080606) and DGAPA-UNAM (Grant
IN202907-3) for their support to this work. CC and MGC also thank
CONACYT for an M.Sc. and a Ph.D. grant, respectively.
.
For other examples of enzymatic hydration of heterocyclic nitriles,
consult:(h) N. Klempier, A. de Raadt, H. Griengl, G. Heinisch, J. Heterocycl.
Chem. 29 (1992) 93;
(i) N. Klempier, A. de Raadt, K. Faber, H. Griengl, Tetrahedron Lett. 32 (1991)
341.
Appendix A. Supplementary data
[14] (a) M.G. Crestani, J.J. Garcia, J. Mol. Catal. A, Chem. 299 (2009) 26;
(b) C. Crisóstomo, M.G. Crestani, J.J. García, J. Mol. Catal. A, Chem. 266 (2007)
139;
Supplementary data associated with this article can be found, in
(c) M.G. Crestani, A. Arévalo, J.J. García, Adv. Synth. Catal. 348 (2006) 732;
(d) J.J. García, A. Arévalo, N.M. Brunkan, W.D. Jones, Organometallics 23 (2004)
3997;
References
(e) J.J. García, N.M. Brunkan, W.D. Jones, J. Am. Chem. Soc. 124 (2002) 9547;
(f) J.J. García, W.D. Jones, Organometallics 19 (2000) 5544.
[15] M.B. Smith, J. March, March’s Advanced Organic Chemistry: Reactions,
Mechanisms, and Structure, fifth ed., John Wiley and Sons Inc., New York,
NY, 2001. pp. 48–49, 688–689.
[1] (a) I. Johansson, fifth ed., in: A. Seidel (Ed.), Kirk–Othmer Encyclopedia of
Chemical Technology, vol. 2, John Wiley and Sons, Hoboken, NJ, 2004, pp. 442–
463;
(b) B.C. Challis, J.A. Challis, in: J. Zabicky (Ed.), The Chemistry of Amides, John
Wiley and Sons, Great Britain, 1970, pp. 816–847.
ˇ
ˇ
[16] V. Vejvoda, O. Šveda, O. Kaplan, V. Prikrylová, V. Elišáková, M. Himl, D. Kubác,
ˇ
H. Pelantová, M. Kuzma, V. Kren, L. Martínková, Biotechnol. Lett. 29 (2007)
[2] (a) V.Y. Kukushkin, A.J.L. Pombeiro, Inorg. Chim. Acta 358 (2005) 1;
(b) N.A. Bokach, V.Y. Kukushkin, Russ. Chem. Rev. 74 (2005) 153;
(c) V.Y. Kukushkin, A.J.L. Pombeiro, Chem. Rev. 102 (2002) 1771.
[3] According to the IUPAC definition, the term hydration refers to the addition of
water or the elements of water (i.e. H and OH) to a molecular entity, which in
[4] (a) M.-X. Wang, S.-J. Lin, Tetrahedron Lett. 42 (2001) 6925;
(b) K. Takahashi, K. Shibasaki, K. Ogura, H. Iida, Chem. Lett. (1983) 859.
[5] (a) J. Chin, J.H. Kim, Angew. Chem., Int. Ed. Engl. 29 (1990) 523;
(b) K. Sugiyama, H. Miura, Y. Nakano, H. Sekiwa, T. Matsuda, Bull. Chem. Soc.
Jpn. 59 (1986) 2983;
1119.
[17] D.A. Vicic, W.D. Jones, J. Am. Chem. Soc. 119 (1997) 10855.
[18] R.J. Errington, Advanced Practical Inorganic and Metalorganic Chemistry, first
ed., Blackie Academic and Professional, London, 1997, pp. 99–100.
[19] (a) R.C. Weast, M.J. Astle, fourth ed., CRC Handbook of Data on Organic
Compounds, vol. I (A–O), CRC Press Inc., Boca Raton, 1987, pp. 793, 794, 908;
(b) R.C. Weast, M.J. Astle, fourth ed., CRC Handbook of Data on Organic
Compounds, vol. II (O–Z), CRC Press Inc., Boca Raton, 1987, pp. 118, 257, 675;
(c) J.P. Charles, The Aldrich Library of NMR Spectra, second ed., vol. II, 1993, pp.
675, 676.
[20] (a) Advanced Chemistry Development Inc., ACD/HNMR Predictor, version 5.11,
2001;
(c) F. Nozaki, T. Sodesawa, T. Yamamoto, J. Catal. 84 (1983) 267;
(d) H. Hirai, H. Wakabayashi, M. Komiyama, Chem. Lett. (1983) 1047;
(e) H. Miura, K. Sugiyama, S. Kawakami, Chem. Lett. (1982) 183;
(f) G. Villain, Ph. Kalck, A. Gaset, Tetrahedron Lett. 21 (1980) 2901.
(b) Advanced Chemistry Development Inc., ACD/CNMR Predictor, version 5.10,
2001.