J. H. Lutje Spelberg et al. / Tetrahedron: Asymmetry 13 (2002) 1083–1089
1089
4.2.3. Enantiomerically pure para-nitro-2-bromo-1-
References
phenylethanol, 1 and para-nitrostyrene oxide, 2. Enan-
tiomerically pure 1 and 2 were obtained by preparative
HPLC using an analytical Chiralpak AS column with
hexane/isopropanol (95:5) as eluent. Retention times of
individual enantiomers (e.e. >99%): (R)-1, 45.4 min;
(S)-1, 52.8 min; (R)-2, 17.2 min; (S)-2, 25.3 min.
1. Kasai, N.; Suzuki, T.; Furukawa, Y. J. Mol. Catal. B
1998, 4, 237.
2. Assis, H. M. S.; Bull, A. T.; Hardman, D. J. Enzyme
Microb. Technol. 1998, 22, 545.
3. Lutje Spelberg, J. H.; van Hylckama Vlieg, J. E. T.;
Bosma, T.; Kellogg, R. M.; Janssen, D. B. Tetrahedron:
Asymmetry 1999, 10, 2863.
4. van Hylckama Vlieg, J. E. T.; Tang, L.; Lutje Spelberg, J.
H.; Smilda, T.; Poelarends, G. J.; Bosma, T.; van
Merode, A.; Fraaije, M. W.; Janssen, D. B. J. Bacteriol.
2001, 183, 5058.
5. Yu, F.; Nakamura, W.; Mizunashi, W.; Watanabe, I.
Biosci. Biotechnol. Biochem. 1994, 58, 1451.
6. Verschueren, K. H.; Seljee, F.; Rozeboom, H. J.; Kalk,
K. H.; Dijkstra, B. W. Nature 1993, 363, 693.
7. Keuning, S.; Janssen, D. B.; Witholt, B. J. Bacteriol.
1985, 163, 635.
8. Holloway, P.; Trevors, J. T.; Lee, H. J. Microbiol. Meth-
ods 1998, 32, 31.
9. Marvanova´, S.; Nagata, Y.; Wimmerova´, M.; Sy´korova´,
J.; Hynkova´, K.; Damborsky´, J. J. Microbiol. Methods
2001, 44, 149.
10. Nakamura, T.; Nagasawa, T.; Yu, F.; Watanabe, I.;
Yamada, H. Biochem. Biophys. Res. Commun. 1991, 180,
124.
11. Lutje Spelberg, J. H.; van Hylckama Vlieg, J. E. T.;
Tang, L.; Janssen, D. B.; Kellogg, R. M. Org. Lett. 2001,
3, 41.
12. Westkaemper, R. B.; Hanzlik, R. P. Arch. Biochem.
Biophys. 1981, 208, 195.
13. Rink, R.; Kingma, J.; Lutje Spelberg, J. H.; Janssen, D.
B. Biochemistry 2000, 39, 5600.
14. Baldascini, H.; Ganzeveld, K. J.; Janssen, D. B.;
Beenackers, A. A. C. M. Biotech. Bioeng. 2001, 73, 44.
15. Rink, R.; Lutje Spelberg, J. H.; Pieters, R. J.; Kingma, J.;
Nardini, M.; Kellogg, R. M.; Dijkstra, B. W.; Janssen, D.
B. J. Am. Chem. Soc. 1999, 121, 7417.
16. Straathof, A. J. J.; Jongejan, J. A. Enzyme Microb.
Technol. 1997, 21, 559.
17. Iglesias, E.; Garcia-Rio, L.; Leis, R. J.; Pena, M. E.;
Williams, D. L. H. J. Chem. Soc. Perkin Trans. 2 1992,
1673.
4.3. Enzyme assays with chromogenic substrates
In a typical experiment, a stock solution of 1 or 2 in
DMSO (2 mL) was added to a cell containing buffer
(1.00 mL) at 22°C to give a final concentration of
approximately 250 mM. In ring-opening and inhibition
experiments the pH of the medium was 7.2 (300 mM
Tris-SO4) and in ring-closure reactions 7.5 (100 mM
Tris-SO4). In ring-opening and inhibition experiments,
the nucleophile was added as its sodium salt (except for
ethanol and isopropylamine) from a concentrated
aqueous stock solution. The conversion was started by
addition of the enzyme and the change in absorbance at
310 nm was monitored. The extinction coefficients of 1,
3050 M−1 cm−1 and 2, 4289 M−1 cm−1 at 310 nm were
used to calculate concentrations of 1 and 2.
4.4. Kinetic resolution experiments
Substrate 1 or 2 was added to a screw-capped bottle
containing Tris buffer (20 mL) at 22°C to give a final
concentration of 3 mM. In ring-opening experiments
the pH of the medium was 7.2 (300 mM Tris-SO4) and
in ring-closure reactions 7.5 (100 mM Tris-SO4). In
ring-opening experiments, the nucleophile was added to
a concentration indicated in Table 3. The reaction was
started by addition of the enzyme. The reaction was
monitored by periodically taking samples from the
reaction mixture and extracting them with diethyl ether
containing an internal standard such as mesitylene or
acetophenone. The e.e. and conversion of 1 and 2 were
determined by chiral HPLC analysis as described
above. In ring-closure experiments the E-value of a
kinetic resolution was calculated from the enantiomeric
excess of the halohydrin 1 and the epoxide 2 and in
ring-opening experiments the E-value was calculated
from the conversion and the enantiomeric excess of
epoxide 2.16
18. Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacob-
sen, E. N. J. Am. Chem. Soc. 1995, 117, 5897.
19. Farrow, J. F.; Schaus, S. E.; Jacobsen, E. N. J. Am.
Chem. Soc. 1996, 118, 7420.
20. Archer, I. V. J. Tetrahedron 1997, 53, 15617.
21. Kamal, A.; Rao, A. B.; Rao, M. Tetrahedron Lett. 1992,
33, 4077.
Acknowledgements
22. Kamal, A.; Rao, M. Tetrahedron: Asymmetry 1994, 5,
1881.
23. Mischitz, M.; Faber, K. Tetrahedron Lett. 1994, 35, 81.
24. Nakamura, T.; Nagasawa, T.; Yu, F.; Watanabe, I.;
Hideaki, Y. Tetrahedron 1994, 50, 11821.
This research was financially supported by STW
(GCH.3877) and by Innovation Oriented Research Pro-
gram (IOP) on Catalysis (No. 94007a) of the Dutch
Ministry of Economic Affairs.