Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
18.
DOI: 10.1039/C5CC06858D
Soc, 2013, 2010, 132, 16893-16899.
J. Marik and J. L. Sutcliffe, Tetrahedron Lett, 2006, 47,
6681-6684.
D. Zeng, B. M. Zeglis, J. S. Lewis and C. J. Anderson, J Nucl
Med, 2013, 54, 829-832.
V. Kumar and D. K. Boddeti, Recent Res Cancer, 2013, 194,
189-219.
C. J. Anderson and R. Ferdani, Cancer Biother Radio, 2009,
24, 379-393.
I. Verel, G. W. Visser, R. Boellaard, M. Stigter-van Walsum,
G. B. Snow and G. A. van Dongen, J Nucl Med, 2003, 44,
1271-1281.
K. Willowson, N. Forwood, B. W. Jakoby, A. M. Smith and
D. L. Bailey, Med. Phys, 2012, 39, 7153-7159.
W. H. Bakker, R. Albert, C. Bruns, W. A. Breeman, L. J.
Hofland, P. Marbach, J. Pless, D. Pralet, B. Stolz, J. W.
Koper and et al., Life Sci, 1991, 49, 1583-1591.
D. Zeng, Q. Ouyang, Z. Cai, X.-Q. Xie and C. J. Anderson,
Chem Com, 2014, 50, 43-45.
In summary, a novel CuAAC ligand FBTTBE has been
successfully developed that not only demonstrated higher
catalytic efficiency than two commercial available ligands
(TBTA & THPTA), but also simplified the removal of toxic
copper species after reactions, rendering it an ideal ligand for
CuAAC. In addition, transchelation was avoided when applying
FBTTBE in preparing radiometal-based pharmaceuticals,
broadening the application of CuAAC beyond 18F-chemistry.
Although reactions presented here are primarily geared
toward PET and molecular imaging, FBTTBE can be applied in
almost any CuAAC where the high reaction rate as well as the
complete removal of copper species are desired.
We thank Dr. Sai Zhao for his assistance with the synthesis and
fluorogenic assay. This work was supported by the National
Institute of Biomedical Imaging and Bioengineering grant R21-
EB017317. Preclinical PET/CT imaging is supported in part by
P30CA047904 (UPCI CCSG).
19.
20.
21.
22.
23.
24.
25.
26.
27.
D. Zeng, Y. Guo, A. G. White, Z. Cai, J. Modi, R. Ferdani and
C. J. Anderson, Mol Pharm, 2014, 11, 3980-3987.
References
1.
2.
3.
4.
5.
V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B.
Sharpless, Angew Chem Int Edit, 2002, 41, 2596-2599.
J. E. Hein and V. V. Fokin, Chem Soc Rev, 2010, 39, 1302-
1315.
H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew Chem Int
Edit, 2001, 40, 2004-2021.
H. C. Kolb and K. B. Sharpless, Drug Discov Today, 2003, 8,
1128-1137.
E. Lallana, A. Sousa-Herves, F. Fernandez-Trillo, R. Riguera
and E. Fernandez-Megia, Pharm Res, 2012, 29, 1-34.
C. D. Spicer and B. G. Davis, Nat Commun, 2014, 5.
L. M. Gaetke and C. K. Chow, Toxicology, 2003, 189, 147-
163.
6.
7.
8.
A. J. Link and D. A. Tirrell, J Am Chem Soc, 2003, 125,
11164-11165.
9.
A. E. Speers, G. C. Adam and B. F. Cravatt, J Am Chem Soc,
2003, 125, 4686-4687.
10.
11.
12.
13.
14.
15.
E. M. Sletten and C. R. Bertozzi, Angew Chem Int Edit,
2009, 48, 6974-6998.
R. D. Carpenter, S. H. Hausner and J. L. Sutcliffe, ACS Med
Chem Lett, 2011, 2, 885-889.
M. L. Blackman, M. Royzen and J. M. Fox, J Am Chem Soc,
2008, 130, 13518-13519.
S. I. Presolski, S. K. Mamidyala, F. Manzenrieder and M. G.
Finn, ACS Comb Sci, 2012, 14, 527-530.
Z. Gao, V. Gouverneur and B. G. Davis, J Am Chem Soc,
2013, 135, 13612-13615.
G. de Almeida, E. M. Sletten, H. Nakamura, K. K.
Palaniappan and C. R. Bertozzi, Angew Chem Int Edit,
2012, 51, 2443-2447.
16.
17.
W. Zhang, Chem Rev, 2004, 104, 2531-2556.
C. Besanceney-Webler, H. Jiang, T. Zheng, L. Feng, D.
Soriano del Amo, W. Wang, L. M. Klivansky, F. L. Marlow,
Y. Liu and P. Wu, Angew Chem Int Edit, 2011, 50, 8051-
8056.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins