3
2. (a) Krishnan, S.; Bagdanoff, J. T.; Ebner, D. C.; Ramtohul, Y.
To prevent the observed side reaction, ester moiety in 13 was
converted into the corresponding TBS-protected alcohol 16 via
DIBAL-H reduction in 83% yield (2 steps) (Scheme 5). Pd-
catalyzed cascade cyclization was then examined using the TBS-
protected substrate under the optimum conditions and tricyclic
alkylidene indoline derivative 17 was obtained in 77% yield.13
Isomerization of 17 into the 3,4-fused tricyclic indole derivative
was achieved by treatment with 30 equiv of TFA and subsequent
removal of the TBS group by TBAF provided compound 18 in
98% yield (2 steps). Dehydration of 18 using 2-nitrophenyl
selenocyanate followed by elimination under oxidative
conditions afforded 19 in 77% yield. Both tosyl groups were
removed by Birch reduction and protection of the two nitrogen
atoms with a Boc group afforded Yang’s known intermediate 20
in 70% yield (2 steps).4h, 14 The NMR data were identical to those
reported by Yang et al. The enantiomeric excess of 20 (98% ee)
was determined by chiral HPLC analysis. Because the synthetic
route from 20 to (–)-aurantioclavine 1 was established, we
achieved a formal enantioselective synthesis.
K.; Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130,
13745; (b) Behenna, D. C.; Krishnan, S.; Stoltz, B. M.
Tetrahedron Lett. 2011, 52, 2152.
3. Lin, H.-C.; Chiou, G.; Chooi, Y.-H.; McMahon, T. C.; Xu, W.;
Garg, N. K. and Tang, Y. Angew. Chem. Int. Ed. 2015, 54, 3004.
4. (a) Yamada, F.; Makita, Y.; Suzuki, T.; Somei, M. Chem. Pharm.
Bull. 1985, 33, 2162; (b) Hegedus, L. S.; Toro, J. L.; Miles, W. H.;
Harrington, P. J. J. Org. Chem. 1987, 52, 3319; (c) Somei, M.;
Yamada, F. Heterocycles 2007, 74, 943; (d) Yamada, K.;
Namerikawa, Y.; Haruyama, T.; Miwa, Y.; Yanada, R.; Ishikura,
M. Eur. J. Org. Chem. 2009, 5752; (e) Brak, K.; Ellman, J. A.
Org. Lett. 2010, 12, 2004; (f) Xu, Z.; Hu, W.; Liu, Q.; Zhang, L.;
Jia, Y. J. Org. Chem. 2010, 75, 7626; (g) Suetsugu, S.;
Nishiguchi, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2014, 16,
996; (h) Lei, T.; Zhang, H.; Yang, Y.-R. Tetrahedron Lett. 2015,
56, 5933; (i) Park, J.; Kim, D.-H.; Das, T.; Cho, C.-G. Org. Lett.
2016, 18, 5098.
5. (a) Breazzano, S. P.; Poudel, Y. B.; Boger, D. L. J. Am. Chem.
Soc. 2013, 135, 1600; (b) Shan, D.; Gao, Y.; Jia, Y. Angew.
Chem., Int. Ed. 2013, 52, 4902; (c) Miura, T.; Funakoshi, Y.;
Murakami, M. J. Am. Chem. Soc. 2014, 136, 2272. (d) Yuan, H.;
Guo, Z.; Luo, T. Org. Lett. 2017, 19, 624; (e) Zhang, X.; Li, Y.;
Shi, H.; Zhang, L.; Zhang, S.; Xu, X.; Liu, Q. Chem. Commun.
2014, 50, 7306. (f) Tao, P.; Jia, Y. Chem. Commun.2014, 50,
7367. (g) Zhou, B.; Yang, Y.; Tang, H.; Du, J.; Feng, H.; Li, Y.
Org. Lett. 2014, 16, 3900.
6. For other representative synthetic methods of 3,4-fused indole
derivatives, see: (a) Greshock, T. J.; Funk, R. L. J. Am. Chem.
Soc. 2006, 128, 4946; (b) Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H.
Org. Lett. 2008, 10, 5239; (c) Chang, D.-J.; Wu, H.-B.; Tian, S.-K.
Org. Lett. 2011, 13, 5636; (d) Peshkov, V. A.; Van Hove, S.;
Donets, P. A.; Pereshivko, O. P.; Van Hecke, K.; Van Meervelt,
L.; Van der Eycken, E. V. Eur. J. Org. Chem. 2011, 1837; (e)
Park, I.-K.; Park, J.; Cho, C.-G.; Angew. Chem. Int. Ed.2012, 51,
2496; (f) Hellal, M.; Singh, S.; Cuny, G. D. J. Org. Chem. 2012,
77, 4123; (g) Bartoccini, F.; Casoli, M.; Mari, M.; Piersanti, G. J.
Org. Chem. 2014, 79, 3255; (h) Park, J.; Kim, S.-Y.; Kim, J.-E.;
Cho, C.-G. Org. Lett. 2016, 16, 178.
7. (a) Nakano, S.; Inoue, N.; Hamada, Y.; Nemoto, T. Org. Lett.
2015, 17, 2622; (f) Suzuki, Y.; Tanaka, Y.; Nakano, S.; Dodo, K.;
Yoda, N.; Shinohara, K.; Kita, K.; Kaneda, A.; Sodeoka, M.;
Hamada, Y.; Nemoto, T. Chem. Eur. J. 2016, 22, 4418; (c) Inoue,
N.; Nakano, S.; Harada, S.; Hamada, Y.; Nemoto, T. J. Org.
Chem. 2017, 82, 2787; (d) Tanaka, Y.; Suzuki, Y.; Hamada, Y.;
Nemoto, T. Heterocycles 2017, 95, 243.
8. (a) Arai, H.: Sugaya, N.; Sasaki, N.; Makino, K.; Lectard, S.;
Hamada, Y. Tetrahedron Lett. 2009, 50, 3329; (b) Nemoto, T.;
Hayashi, M.; Xu, D.; Hamajima, A.; Hamada, Y. Tetrahedron:
Asymmetry 2014, 25, 1133.
9. Dimethylation of II, followed by dehydration of the corresponding
tertiary alcohol, can be a possible synthetic route for 1. Stoltz and
co-workers already reported that, however, dehydration of such
tertiary alcohol gave a mixture of inseparable olefin isomers. See,
reference 2a.
Scheme 5. Formal enantioselective total synthesis of (–)-
aurantioclavine.
In conclusion, we achieved
synthesis of (−)-aurantioclavine. The core tricyclic skeleton was
synthesized using Pd-catalyzed Heck insertion–allylic
amination cascade as the key step. The stereocenter was
constructed by highly enantioselective organocatalytic
a formal enantioselective
10. For representative examples of organocatalytic asymmetric
aziridination of α,β−unsaturated aldehydes and ketones using 3 as
a nucleophile, see: (a) Pesciaioli, F.; De Vincentiis, F.; Galzerano,
P.; Bencivenni, G.; Bartoli, G.; Mazzanti, A.; Melchiorre, P.
Angew, Chem., Int. Ed. 2008, 47, 8703; (b) Deiana, L.; Zhao, G.-
L.; Lin, S.; Dziedzic, P.; Zhang, Q.; Leijonmarck, H.; Córdova, A.
Adv. Synth. Catal. 2010, 352, 3201; (c) De Vincentiis, F.;
Bencivenni, G.; Pesciaioli, F.; Mazzanti, A.; Bartoli, G.;
Galzerano, P.; Melchiorre, P. Chem. Asian J. 2010, 5, 1652; (d)
Deiana, L.; Dziedzic, P.; Zhao, G.-L.; Vesely, J.; Ibrahem, I.;
Rois, R.; Sun, J.; Córdova, A. Chem. Eur. J. 2011, 17, 7904; (e)
Menjo, Y.; Hamajima, A.; Sasaki, N.; Hamada, Y. Org. Lett.
2011, 13, 5744.
a
a
asymmetric aziridination reaction. This work successfully
demonstrated the synthetic utility of our methods. Further studies
on the application of these methods to the synthesis of bioactive
natural products are underway.
Acknowledgments
11. (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.
Angew, Chem., Int. Ed. 2005, 44, 794; (b) Hayashi, Y.; Gotoh, H.;
Hayashi, T.; Shoji, M. Angew, Chem., Int. Ed. 2005, 44, 4212; (c)
For a review, see: Jensen, K. L.; Dickmeiss, G.; Jiang, H.;
Albrecht, L.; Jørgensen, K. A. Acc. Chem. Res. 2012, 45, 248.
12. (a) Chow, K. Y.-K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
8126; (b) Vesely, J.; Ibrahem, I.; Zhao, G.-L.; Rios, R.; Córdova,
A. Angew, Chem., Int. Ed. 2007, 46, 778; (c) Jiang, H.; Gschwend,
B.; Albrecht, L.; Jørgensen, K. A. Org. Lett. 2010, 12, 5052.
13. We also examined the cascade cyclization using a primary alcohol
derivative. The reaction was very slow, however, and the target
This work was supported financially by JSPS KAKENHI Grant
Number 15K07850 (T.N.), JSPS Research Fellowship for Young
Scientist 17J01154 (S.N.), and grant from Global and Prominent
Research, Chiba University.
References and notes
1. Kozlovskii, A. G.; Solov’eva, T. F.; Sahkarovskii, V. G.; Adanin,
V. M. Dokl. Akad. Nauk. SSSR. 1981, 260, 230.