Communication
ChemComm
Notes and references
1
2
M.-M. Russew and S. Hecht, Adv. Mater., 2010, 22, 3348.
In a different context this is related to the concept of molecular-scale
logic gates, see: A. P. de Silva and N. D. McClenaghan, Chem. – Eur. J.,
2
004, 10, 574.
3
4
J. Zhang, Q. Zhu and H. Tian, Adv. Mater., 2013, 25, 378.
(a) T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz and
H. E. Gaub, Science, 2002, 296, 1103; (b) M. Alemani, M. V. Peters,
S. Hecht, K.-H. Rieder, F. Moresco and L. Grill, J. Am. Chem. Soc.,
2
006, 128, 14446; (c) C. Dri, M. V. Peters, J. Schwarz, S. Hecht and
L. Grill, Nat. Nanotechnol., 2008, 3, 649.
Fig. 4 E - Z photoisomerisation of E-1 in presence of 3 (1@3, solid black
line), deprotonated E-1 in presence of 3 (1–2H + 3, dashed black line),
5 H. Yu and T. Ikeda, Adv. Mater., 2011, 23, 2149.
6 (a) R. S. Stoll and S. Hecht, Angew. Chem., Int. Ed., 2010, 49, 5054;
+
and E-1 in presence of 4 (1@4
absorption maximum at 350 nm upon irradiation at 334 nm (40 mM in
CHCl : CH CN = 2 : 1). After 60 min DBU (4 equiv.) was added to the
2
, solid red line) monitoring azobenzene
(b) R. G ¨o stl, A. Senf and S. Hecht, Chem. Soc. Rev., 2014, 43, 1982.
A. Natansohn and P. Rochon, Chem. Rev., 2002, 102, 4139.
(a) A. A. Beharry and G. A. Woolley, Chem. Soc. Rev., 2011, 40, 4422;
7
8
3
3
(
2
b) T. Fehrentz, M. Sch ¨o nberger and D. Trauner, Angew. Chem., Int. Ed.,
011, 50, 12156; (c) T. S. Zatsepin, L. A. Abrosimova, M. V. Monakhova,
solution of E-1@3 leading to deprotonation and recovery of photoreactivity.
Subsequent Z - E photoisomerisation at 436 nm and addition of TFA
H. Le Thi, A. Pingoud, E. A. Kubareva and T. S. Oretskaya, Russ. Chem.
Rev., 2013, 82, 942.
(a) W. Szymanski, J. M. Beierle, H. A. Kistemaker, W. A. Velema and
B. L. Feringa, Chem. Rev., 2013, 113, 6114; (b) W. A. Velema,
W. Szymanski and B. L. Feringa, J. Am. Chem. Soc., 2014, 136, 2178.
(
4.1 equiv.) reprotonates the axle and resets the system. Note that the system
does not recover fully because of the photostationary state of deprotonated
and photochemical side reactions of 3.
9
1
1
0 (a) X. Chen, L. Hong, X. You, Y. Wang, G. Zou, W. Su and Q. Zhang,
Chem. Commun., 2009, 1356; (b) G. Wenz, B.-H. Han and A. M u¨ ller,
Chem. Rev., 2006, 106, 782; (c) D.-H. Qu, Q.-C. Wang, Q.-W. Zhang,
X. Ma and H. Tian, Chem. Rev., 2015, DOI: 10.1021/cr5006342;
insufficient solubility in the acetonitrile-rich medium. All of the
above experiments clearly indicate that formation of the E-1@3
complex is actually responsible for inhibition and suggest that in
the tight, vice-like pseudo[2]rotaxane binding scenario E - Z
photoisomerisation is shut down.
(
1
d) S. Yagai, T. Karatsu and A. Kitamura, Chem. – Eur. J., 2005,
1, 4054; (e) S. Hecht, Small, 2005, 1, 26; ( f ) C. Stoffelen, J. Voskuhl,
P. Jonkheijm and J. Huskens, Angew. Chem., Int. Ed., 2014, 53, 3400.
11 (a) M. S. Vollmer, T. D. Clark, C. Steinem and R. H. Ghadiri, Angew.
Chem., Int. Ed., 1999, 38, 1598; (b) M. Yamamura, Y. Okazaki and
T. Nabeshima, Chem. Commun., 2012, 48, 5724; (c) H.-S. Tang,
N. Zhu and V. W.-W. Yam, Organometallics, 2006, 26, 22.
Comparing the E - Z photoisomerisation at these different
conditions, an inhibition efficiency of the pseudo[2]rotaxane
system can be estimated. Looking at the decay of the E-azobenzene 12 The thermal half-life of regular (Z)-azobenzenes is only on the time
scale of minutes to few hours. For a notable recent exception, see:
absorption maximum at 350 nm, one can see that the decrease
after 60 min for the complex E-1@3 is approximately 7 times
(
a) D. Bl ´e ger, J. Schwarz, A. M. Brouwer and S. Hecht, J. Am. Chem.
Soc., 2012, 134, 20597; (b) C. Knie, M. Utecht, F. Zhao, H. Kulla,
S. Kovalenko, A. M. Brouwer, P. Saalfrank, S. Hecht and D. Bl ´e ger,
Chem. – Eur. J., 2014, 20, 16492.
3 (a) J. M. Timko, S. S. Moore, D. M. Walba, P. C. Hiberty and D. J. Cram,
J. Am. Chem. Soc., 1977, 99, 4207; (b) P. R. Ashton, P. J. Campbell,
P. T. Glink, D. Philp, N. Spencer, J. F. Stoddart, E. J. T. Chrystal,
S. Menzer, D. J. Williams and P. A. Tasker, Angew. Chem., Int. Ed., 1995,
slower than for the deprotonated and therefore non-complexed
+
case, 1–2H + 3, as well as the monovalent host case, i.e. E-1@4
2
1
(Fig. 4, first 60 min). Subsequent in situ deprotonation of the
binding sites in the E-1@3 complex quickly re-establishes
photochromism and results in a fast E - Z photoisomerisation.
Upon addition of trifluoroacetic acid to the fully converted mixture
3
4, 1865; (c) W. Jiang, P. C. Mohr, A. Sch ¨a fer and C. A. Schalley, J. Am.
Chem. Soc., 2010, 132, 2309.
and irradiating with 436 nm light Z - E photoisomerisation takes 14 W. Jiang and C. A. Schalley, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 10425.
1
5 M. Linseis, S. Z ´a li ˘s , M. Zabel and R. F. Winter, J. Am. Chem. Soc.,
012, 134, 16671.
6 T. Bosanac and C. S. Wilcox, Org. Lett., 2004, 6, 2321.
place and the system is reset thereby showing the reversibility of
the process. These experiments demonstrate gating of azobenzene
2
1
photoisomerisation by addition of either base or acid to the 17 (a) W. Jiang, K. Nowosinski, N. L. L o¨ w, E. V. Dzyuba, F. Klautzsch,
A. Sch ¨a fer, J. Huuskonen, K. Rissanen and C. A. Schalley, J. Am. Chem.
Soc., 2011, 134, 1860; (b) L. Kaufmann, N. L. Traulsen, A. Springer,
H. V. Schr o¨ der, T. M ¨a kel ¨a , K. Rissanen and C. A. Schalley, Org. Chem.
pseudo[2]rotaxane host–guest system.
In the present study, we found a unique way in which strong
binding of a divalent azobenzene guest to a complementary
host was found to effectively inhibit E - Z photoisomerisation.
This complexation-induced gating effect can be tuned by changing
the strength of the non-covalent interactions, either by varying
solvent polarity or more effectively by adding base or acid.
On-going work is focusing on shifting the irradiation wave-
lengths further to the red to achieve a selective excitation of the
Front., 2014, 1, 521; (c) L. Kaufmann, E. V. Dzyuba, F. Malberg, N. L.
L ¨o w, M. Groschke, B. Brusilowskij, J. Huuskonen, K. Rissanen,
B. Kirchner and C. A. Schalley, Org. Biomol. Chem., 2012, 10, 5954.
8 C. A. Hunter, K. R. Lawson, J. Perkins and C. J. Urch, J. Chem. Soc.,
Perkin Trans. 2, 2001, 651.
1
1
2
2
9 C. A. Hunter and H. L. Anderson, Angew. Chem., Int. Ed., 2009, 48, 7488.
0 S. Grimme, Chem. – Eur. J., 2012, 18, 9955.
1 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010,
132, 154104.
1
2
22 F. Eckert and A. Klamt, COSMOtherm, Version C3.0, Release 13.01,
azobenzene axle.
COSMOlogic GmbH & Co. KG Leverkusen, Germany, 2013.
3 A. J. Achazi, L. K. S. von Krbek, C. A. Schalley and B. Paulus, J. Comput.
Chem., 2015, DOI: 10.1002/jcc.23914.
The authors thank the Deutsche Forschungsgemeinschaft
for generous financial support (SFB 765). Support by the High-
Performance Computing facilities of the Freie Universit ¨a t Berlin
2
2
4 (a) E. J. Bowen and D. W. Tanner, Trans. Faraday Soc., 1955, 51, 475;
(
b) W. Jiang, M. Han, H. Y. Zhang, Z. J. Zhang and Y. Liu, Chem. – Eur. J.,
009, 15, 9938.
(ZEDAT) is acknowledged. L.v.K. is grateful to the Studienstiftung
2
des Deutschen Volkes for a PhD fellowship.
25 M. V. Peters, R. Goddard and S. Hecht, J. Org. Chem., 2006, 71, 7846.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015