Production of Acrylamide using Alginate-Immobilized E. coli
FULL PAPERS
the reaction mixture adjusted to 20 mL by the addition of dis-
tilled, deionized water. The mixture was stirred at 5, 10 or 358C.
Samples (0.100 mL) of the reaction mixture were mixed with
[4] T. Nagasawa, H. Nanba, K. Ryuno, K. Takeuchi, H. Ya-
mada, Eur. J. Biochem. 1987, 162, 691–698.
[5] T. Nagaswa, H. Shimizu, H. Yamada, Appl. Microbiol.
Biotechnol. 1993, 40, 189–195.
0
.400 mL of water, and then 0.200 mL of the diluted sample
were mixed with 0.200 mL of 0.200 M sodium butyrate
HPLC external standard); the resulting mixture was centri-
[
[
[
[
6] R. Padmakumar, P. Oriel, Appl. Biochem. Biotechnol.
999, 77–79, 671–679.
7] D. Graham, R. Pereira, D. Barfield, D. Cowan, Enz. Mi-
crob. Technol. 2000, 26, 368–373.
8] N. A. Webster, D. K. Ramsden, J. Hughes, Biotechnology
Lett. 2001, 23, 95–101.
9] J. M. Stevens, N. Rao Saroja, M. Jaouen, M. Belghazi, J.-
M. Schmitter, D. Mansuy, I. Artaud, M.-A. Sari, Protein
Expression and Purification 2003, 29, 70–76.
(
1
fuged and the supernatant analyzed by HPLC. At the comple-
tion of the reaction (100% conversion of acrylonitrile), the
product mixture was decanted from the biocatalyst beads,
and additional distilled, deionized water, 0.2 mL of 0.20 M cal-
cium acetate buffer and 1.40 mL (1.13 g, 21.3 mmol) of acrylo-
nitrile mixed with the reaction heel (immobilized-cell catalyst
and remaining product mixture from the previous reaction) at
5, 10 or 358C. At the completion of the second reaction, the
[
10] M. Nojiri, M. Yohda, M. Odaka, Y. Matsushita, M. Tsu-
jimura, T. Yoshida, N. Dohmae, K. Takio, I. Endo, J. Bi-
ochem. (Tokyo) 1999, 125, 696–704.
product mixture was decanted and subsequent reactions per-
formed as before.
[
11] Y. Hashimoto, M. Nishiyama, S. Horinouchi, T. Beppu,
Biosci. Biotechnol. Biochem. 1994, 58, 1859–1865.
12] M. Kobayashi, M. Nishiyama, T. Nagasawa, S. Horinou-
chi, T. Beppu, H. Yamada, Biochim. Biophys. Acta 1991,
Hydration of Acrylonitrile to Acrylamide using
Alginate-Immobilized E. coli SW132 Cells in a Packed
Column Reactor
[
1
129, 23–33.
A 12 cmꢁ2.5 cm diameter stainless steel column was charged
with 34 g of GA/PEI-cross-linked E. coli SW132 cell/alginate
beads (3-mm diameter beads, lot A cells) suspended in
[13] S. Wu, R. D. Fallon, M. S. Payne, Appl. Microbiol. Bio-
technol. 1997, 48, 704–708.
[14] T. Yamaki, T. Oikawa, K. Ito, T. Nakamura, J. Ferment.
Bioeng. 1997, 83, 474–477; A. Miyanaga, S. Fushinobu,
K. Ito, T. Wakagi, Biochem. Biophys. Res. Commun.
0.05 M calcium acetate buffer (pH 7.0). The column was placed
in a controlled-temperature bath at 58C, and an aqueous solu-
tion of 1.13 M acrylonitrile and 2 mM calcium chloride was fed
to the column at an initial flow rate of 0.5 mL/min using a peri-
staltic pump. Samples (0.100 mL) of the column effluent were
mixed with 0.400 mL of water, and then 0.200 mL of the diluted
sample were mixed with 0.200 mL of 0.200 M sodium butyrate
2
001, 288, 1169–1174; A. Miyanaga, S. Fushinobu, K.
Ito, H. Shoun, T. Wakagi, Eur. J. Biochem. 2004, 271,
29–438.
4
[
15] a) J. E. Gavagan, S. Fager, R. D. Fallon, P. W. Folsom,
F. E. Herkes, A. E. Eisenberg, E. C. Hann, R. DiCosimo,
J. Org. Chem. 1998, 63, 4792–4801; b) E. C. Hann, A. E.
Sigmund, S. K. Fager, F. B. Cooling, J. E. Gavagan, A.
Ben-Bassat, S. Chauhan, M. S. Payne, S. M. Hennessey,
R. DiCosimo, Adv. Syn. Catal. 2003, 345, 775–782;
c) DuPont, US Patent 6,670,158 B2, 2003; Chem. Abstr.
(
HPLC external standard) and analyzed by HPLC. The col-
umn flow rate was adjusted during initial operation to achieve
9
0
0
0–95% conversion of acrylonitrile to acrylamide: 0–21 h at
.50 mL/min, 21–118 h at 0.40 mL/min, 118–143 h at
.35 mL/min, 143–399 h at 0.3 mL/min. After continuous op-
eration for 263 h (120 h at 0.30 mL/min), the catalyst produc-
tivity was ca. 155 g acrylamide/g dcw catalyst.
2
003, 139, 148573.
[
[
16] K. L. Petrillo, S. Wu, E. C. Hann, F. B. Cooling, A. Ben-
Bassat, J. E. Gavagan, R. DiCosimo, M. S. Payne. Appl.
Microbiol. Biotechnol. 2005, in press.
17] E. C. Hann, A. E. Sigmund, S. M. Hennessey, J. E. Gav-
agan, D. R. Short, A. Ben-Bassat, S. Chauhan, R. D. Fal-
lon, M. S. Payne, R. DiCosimo, Org. Proc. Res. Dev.
Acknowledgements
The authors thank Susan Fager (DuPont), L. W. Wagner (Du-
Pont) and the staff of the DuPont Fermentation Research Facili-
ty for their technical assistance.
2
002, 6, 492–496.
18] H. S. Davis, O. F. Wiedeman, Ind. Eng. Chem. 1945, 37,
82–485.
19] B. Atkinson, F. Mavituna, Biochemical Engineering and
Biotechnology Handbook, 2nd edn., Macmillan Publish-
ers, Stockton Press, New York, 1991, pp. 582, 764–765.
20] J. Klein, J. Stock, K.-D. Vorlop, Eur. J. Appl. Microbiol.
Biotechnol. 1983, 18, 86–91; T. Rehg, C. Dorger, P. C.
Chau, Biotechnol. Lett. 1986, 8, 111–114; D. B. Seifert,
J. A. Phillips, Biotechnol. Prog. 1997, 13, 562–568.
[
[
4
References
[
1] a) D. A. Cowan, R. A. Cameron, T. L. Tsekoa, Adv.
Appl. Microbiol. 2003, 52, 123–158; b) L. Martinkova,
V. Kren, Biocatal. Biotransform. 2002, 20, 73–93.
2] D. Cowan, R. Cramp, R. Pereira, D. Graham, Q. Alma-
tawah, Extremophiles 1998, 2, 207–216.
[
[
[
[
21] J. S. Hwang, H. N. Chang, Biotechnol. Bioeng. 1989, 34,
3] I. Watanabe, Y. Satoh, K. Enomoto, Agric. Biol. Chem.
3
80–386.
1
987, 51, 3193–3199; I. Watanabe, Y. Satoh, K. Enomoto,
S. Seki, K. Sakashita, Agric. Biol. Chem. 1987, 51, 3201–
206.
3
Adv. Synth. Catal. 2005, 347, 1125–1131
asc.wiley-vch.de
ꢀ 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1131