2
00
N. Morlanés, J.M. Notestein / Journal of Catalysis 275 (2010) 191–201
gands, support modifications, and reactions are currently being ex-
plored for an improved understanding and expanded scope of
grafted Ta catalysts, which will be reported in due course.
O
O
o
O
O
R
Ta
Acknowledgments
O
-
O
N.M. acknowledges the Ministry of Science and Innovation in
Spain for a postdoctoral fellowship. J.M.N. acknowledges the
donors of the American Chemical Society Petroleum Research Fund
and Northwestern University for support of this research. ICP-OES
+
H O
2 2
-
H O
2
1
3
and C NMR were carried out at the Northwestern IMSERC facility.
The DRIFTS work was performed in the Keck-II facility of NUANCE
Center at Northwestern University, supported by NSF-NSEC, NSF-
MRSEC, Keck Foundation, the State of Illinois, and Northwestern
University.
O
O
O
o
O
O
O
o
O
O
O
H
H
R
R
H
H O
Ta
Ta
Appendix A. Supplementary material
O
O
O
O
References
Scheme 4. Proposed cyclohexene epoxidation cycle on Ta–calixarene catalysts. An
equivalent mechanism can be proposed for breaking Ta–O–surface bonds for H
coordination.
2 2
O
[
1] D. Meunier, A. Piechaczyk, A. de Mallmann, J.M. Basset, Angew. Chem. Int. Ed.
8 (1999) 3540.
3
[
[
2] Y. Matsuo, K. Mashima, Angew. Chem. Int. Ed. 40 (2001) 960.
3] D.R. Mulford, J.R. Clark, S.W. Schweiger, P.E. Fanwick, I.P. Rothwell,
Organometallics 18 (1999) 4448.
silanols. At this time, it cannot be deduced which groups directly
coordinating to Ta (phenol or silanol) are formally protonated in
catalytically relevant steps when coordinating and activating
[
4] E. Le Roux, M. Chabanas, A. Baudouin, A. de Mallmann, C. Coperet, E.A.
Quadrelli, J. Thivolle-Cazat, J.M. Basset, W. Lukens, A. Lesage, L. Emsley, G.J.
Sunley, J. Am. Chem. Soc. 126 (2004) 13391.
H
2
O
2
, or whether outer-sphere effects of the general H-bonding
[5] M.C. Burland, T.W. Pontz, T.Y. Meyer, Organometallics 21 (2002) 1933.
[
[
[
6] K.J. Weller, P.A. Fox, S.D. Gray, D.E. Wigley, Polyhedron 16 (1997) 3139.
7] L.L. Anderson, J. Arnold, R.G. Bergman, Org. Lett. 6 (2004) 2519.
8] B.M. Weckhuysen, D.E. Keller, Catal. Today 78 (2003) 25.
environment override these local effects. Scheme 4 assumes that
one of the bonds to the calixarene is broken, reflecting this
proposal, but a surface bond could also be cleaved in catalytically
relevant steps by analogy to a previous result with grafted
calixarene–Ti in non-aqueous systems [43]. The mechanism
remains under investigation.
[9] J.M. Thomas, R. Raja, D.W. Lewis, Angew. Chem. Int. Ed. 44 (2005) 6456.
10] R.A. Sheldon, J. Mol. Catal. 7 (1980) 107.
11] (a) R.L. Brutchey, C.G. Lugmair, L.O. Schebaum, T.D. Tilley, J. Catal. 229 (2005)
[
[
72;
(b) D.A. Ruddy, T.D. Tilley, J. Am. Chem. Soc. 130 (2008) 11088.
12] (a) I. Nowak, M. Ziolek, Chem. Rev. 99 (1999) 3603;
[
(
b) D. Meunier, A. de Mallmann, J.M. Basset, Top. Catal. 23 (2003) 183;
5
. Conclusions
(c) C. Coperet, M. Chabanas, R.P. Saint-Arroman, J.M. Basset, Angew. Chem. Int.
Ed. 42 (2003) 156.
[
[
[
13] J.M. Notestein, A. Katz, Chem. Eur. J. 12 (2006) 3954.
14] J.M. Notestein, E. Iglesia, A. Katz, J. Am. Chem. Soc. 126 (2004) 16478.
15] N. de Silva, S.J. Hwang, K.A. Durkin, A. Katz, Chem. Mater. 21 (2009) 1852.
Epoxidation catalysts were obtained by grafting Ta compounds
on SiO
thesizes catalysts that are more active and selective for direct
non-radical) epoxidation than are monodentate TaX precursors.
2
. Using calixarene–Ta(V) complexes as the Ta source syn-
[16] (a) E. Hoppe, C. Limberg, B. Ziemer, Inorg. Chem. 45 (2006) 8308;
b) E. Hoppe, C. Limberg, B. Ziemer, C. Mugge, J. Mol. Catal. A 251 (2006) 34.
[
(
5
17] L.F.W. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals, fifth ed.
Elsevier.
Combined TGA, ICP, and diffuse reflectance UV–visible spectro-
scopy show that isolated, 1:1 Ta:calixarene complexes are formed
on the surface and are stable under reaction conditions. The elec-
tronic structure and the reactivity per site were shown not to be
a function of surface density, consistent with a single type of iso-
lated catalyst site being present on the surface. Finally, the sites
combining calixarene ligand, Ta, and surface are more active in
epoxidation than either the ligand-free or the homogeneous cases.
It must be noted that while some of the same characteristics
[18] S. Groysman, I. Goldberg, M. Kol, Organometallics 22 (2003) 3793.
[
[
[
[
19] A. Casnati, A. Arduini, E. Ghidini, A. Pochini, R. Ungaro, Tetrahedron 47 (1991)
221.
2
20] B. Castellano, E. Solari, C. Floriani, N. Re, A. Chiesi-Villa, C. Rizzoli, Chem. Eur. J.
5 (1999) 722.
21] B. Castellano, A. Zanotti-Gerosa, E. Solari, C. Floriani, Organometallics 15
(
1996) 4894.
22] C. Floriani, R. Floriani-Moro, Adv. Organometall. Chem. 47 (2001) 167.
[23] C. Redshaw, M. Rowan, D.M. Homden, M.R.J. Elsegood, T. Yamato, C. Perez-
Casas, Chem. Eur. J. 13 (2007) 10129.
[
[
24] J.A. Acho, L.H. Doerrer, S.J. Lippard, Inorg. Chem. 34 (1995) 2542.
25] A. Conde, R. Fandos, A. Otero, A. Rodríguez, P. Terreros, Eur. J. Inorg. Chem. 19
(2008) 3062.
(
high non-radical selectivity, moderately high epoxidation rates)
ꢃ
are exhibited by Cp TaCl
4
as a precursor, this precursor is approx-
[
26] (a) O. Banakh, P.A. Steinmann, L. Dumitrescu-Buforn, Thin Solid Films 513
imately 4ꢁ the cost to synthesize Cal4TaCl. Moreover, the syn-
thetic diversity of the calixarene ligands opens up many more
possibilities for modification of catalytic species. Finally, and as
noted by others, Ta may be an ideal metal for Lewis acid catalysts
because it can coordinate five anionic ligands, allowing for multi-
dentate connection each to ligand and to surface for stability in
coordinating solvents, while still leaving an exchange site for
hydroperoxide [1]. This is experimentally bore out, as the grafted
calixarene–Ta complex was substantially more selective than the
equivalent grafted calixarene–Ti complex. Other calixarene li-
(
(
2006) 136;
b) J. Tauc, A. Menth, J. Non-Cryst. Solids 8-10 (1972) 569.
[27] A. Zanotti-Gerosa, E. Solari, L. Giannini, C. Floriani, A. Chiesi-Villa, C. Rizzoli,
Chem. Commun. (1997) 183.
[
28] (a) E.L. Lee, I.E. Wachs, J. Phys. Chem. C 111 (2007) 14410;
b) Y.S. Chen, J.L.G. Fierro, T. Tanaka, I.E. Wachs, J. Phys. Chem. B 107 (2003)
243.
(
5
[29] M. Baltes, A. Kytokivi, B.M. Weckhuysen, R.A. Schoonheydt, P. Van Der Voort,
E.F. Vansant, J. Phys. Chem. B 105 (2001) 6211.
[
[
30] X. He, J. Wu, L. Zhao, J. Meng, X. Gao, X. Li, Solid State Commun. 147 (2008) 90.
31] J.M. Notestein, A. Katz, E. Iglesia, Langmuir 22 (2006) 4004–4014.
[32] A. Batler, M.J. Clague, G.E. Meister, Chem. Rev. 94 (1994) 625.