Anal. Chem. 2007, 79, 1932-1938
Tracking a New Cell-Penetrating (W/R)
Nonapeptide, through an Enzyme-Stable Mass
Spectrometry Reporter Tag
Diane Delaroche,*,† Baptiste Aussedat,† Soline Aubry,† Ge´ rard Chassaing,† Fabienne Burlina,†
Gilles Clodic,‡ Ge´ rard Bolbach,†,‡ Solange Lavielle,† and Sandrine Sagan*,†
“Synthe`se, Structure et Fonction de Mole´cules Bioactives” (CNRS) and FR 2769, UMR 7613, and Plateforme de
Spectrome´trie de Masse et Prote´omique, Universite´ Pierre et Marie Curie-Paris 6, Case Courrier 182, 4 Place Jussieu,
F-75005 Paris, France
and nucleus of living cells, various kinds of compounds.4,5 The
mechanism of cell entry, energy-dependent or -independent, for
these peptides/proteins is controversial. Many processes that
allow transduction of one molecule from the extracellular medium
to the intracellular one have been stated,7-18 such as the endo-
somal pathway, macropinocytosis, membrane potential, or inverted
micelles. However, it appears now clearly that the mechanism of
cell entry strongly depends on the nature and size of the CPP19
and also of the cargo to be transported.20 For example, incorpora-
tion on a CPP of a fluorescent probe that might be considered as
a hydrophobic cargo and might alter the peptide/membrane
interaction has been reported to confer cytotoxic properties to
many peptides.21 The consensus point for the studies on CPP is
that most of them (if not all) contain basic amino acids, endowing
them with a strong positive net charge that is crucial for their
entry into cells.22 Although several methods describe cell-uptake
CPP quantification (based on radioactivity counting, biotinylation/
cell-ELISA, fluorescence-labeling/spectrophotometer/FACS, reso-
nance energy transfer, HPLC detection, immunodetection, fluo-
rescence correlation microscopy, laser micropipette system, or
We have designed a mass stable reporter (msr) tag with
m/z over 500, trifluoroacetyl(r,r-diethyl)Gly-Lys(NEbiotin)-
(D)Lys-Cys, for the quantification of the uptake and study
of the degradation processes of cell-penetrating peptides
(CPP), by matrix assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry. This tag
was found stable in cell lysis conditions. Using a quantita-
tive MALDI-TOF mass spectrometry analysis based
method, an accurate tracking of a new CPP and of its
degradation products could be done. (1) The new msr(W/
R) nonapeptide (H-RRWWRRWRR-NH2) enters chinese
hamster ovary (CHO) K1 cells with a kinetic reaching a
steady state after 30-60 min of incubation. This plateau
was stable for 4 h and decreased slowly afterward. (2) The
peptide msr(W/R) nonapeptide was not cytotoxic over
48 h incubation with CHO cells. (3) After 1 h incubation,
the msr(W/R) nonapeptide accumulated with a 3-fold
higher concentration than the extracellularly added con-
centration (7.5 µM). (4) The intracellular quantification
was accurate with less than 3% of the quantified peptide
being potentially membrane-bound. (5) There was no
leakage of the full-length CPP outside the cells. And,
finally, (6) analysis of the degradation process of this new
CPP suggests that the peptide did not traffick to lyso-
somes.
(7) Berlose, J. P.; Convert, O.; Derossi, D.; Brunissen, A.; Chassaing, G. Eur. J.
Biochem. 1996, 242, 372-386.
(8) Ziegler, A.; Blatter, X. L.; Seelig, A.; Seelig, J. Biochemistry 2003, 42, 9185-
9194.
(9) Rothbard, J. B.; Jessop, T. C.; Wender, P. A. Adv. Drug Deliv. Rev. 2005,
57, 495-504.
(10) Henriques, S. T.; Castanho, M. A. Biochemistry 2004, 43, 9716-9724.
(11) Terrone, D.; Sang, S. L.; Roudaia, L.; Silvius, J. R. Biochemistry 2003, 42,
13787-13799.
(12) Vives, E. J. Mol. Recognit. 2003, 16, 265-271.
(13) Vendeville, A.; Rayne, F.; Bonhoure, A.; Bettache, N.; Montcourrier, P.;
Cell-penetrating peptidessCPP (also named protein transduc-
tion domainsPTD)1-5sare natural or synthetic peptides identified
as cellular membrane crossing molecules or trojan peptides,6 in
particular through their potency to vehiculate, to the cytoplasm
Beaumelle, B. Mol. Biol. Cell 2004, 15, 2347-2360.
(14) Fotin-Mleczek, M.; Welte, S.; Mader, O.; Duchardt, F.; Fischer, R.; Hufnagel,
H.; Scheurich, P.; Brock, R. J. Cell Sci. 2005, 118, 3339-3351.
(15) Saalik, P.; Elmquist, A.; Hansen, M.; Padari, K.; Saar, K.; Viht, K.; Langel,
U.; Pooga, M. Bioconjugate Chem. 2004, 15, 1246-1253.
(16) Ross, M. F.; Filipovska, A.; Smith, R. A.; Gait, M. J.; Murphy, M. P. Biochem.
J. 2004, 383, 457-468.
(17) Wadia, J. S.; Stan, R. V.; Dowdy, S. F. Nat. Med. 2004, 10, 310-315.
(18) Wang, W.; El-Deiry, W. S. Trends Biotechnol. 2004, 22, 431-434.
(19) Goncalves, E.; Kitas, E.; Seelig, J. Biochemistry 2005, 44, 2692-2702.
(20) Maiolo, J. R.; Ferrer, M.; Ottinger, E. A. Biochim. Biophys. Acta 2005, 1712,
161-172.
(S.S.); dlaroche@ccr.jussieu.fr (D.D.) Phone: 33 1 44 27 55 09. Fax: 33 1 44 27
71 50.
† UMR 7613.
‡ Plateforme de Spectrome´trie de Masse et Prote´omique.
(1) Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiantz, A. J. Biol. Chem. 1994,
269, 10444-10450.
(2) Vives, E.; Brodin, P.; Lebleu, B. J. Biol. Chem 1997, 272, 16010-16017.
(3) Joliot, A.; Prochiantz, A. Nat. Cell Biol. 2004, 6, 189-196.
(4) Dietz, G. P. H.; B¨ahr, M. Mol. Cell. Neurosci. 2004, 27, 85-131.
(5) Lindgren, M.; Hallbrink, M.; Prochiantz, A.; Langel, U. Trends Pharmacol.
Sci. 2000, 21, 99-103.
(21) Jones, S. W.; Christison, R.; Bundell, K.; Voyce, C. J.; Brockbank, S. M. V.;
Newham, P.; Lindsay, M. A. Brit. J. Pharmacol. 2005, 145, 1093-1102.
(22) Jiang, T.; Olson, E. S.; Nguyen, Q. T.; Roy, M.; Jennings, P. A.; Tsien, R. Y.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 17867-17872.
(6) Derossi, D.; Chassaing, G.; Prochiantz, A. Trends Cell Biol. 1998, 8,
84-87.
1932 Analytical Chemistry, Vol. 79, No. 5, March 1, 2007
10.1021/ac061108l CCC: $37.00 © 2007 American Chemical Society
Published on Web 01/30/2007