Inorganic Chemistry
Article
(15) Pal, R.; Negre, C. F. A.; Vogt, L.; Pokhrel, R.; Ertem, M. Z.;
Brudvig, G. W.; Batista, V. S. Biochemistry 2013, 52, 7703−7706.
(16) In this work, we use PCET to refer broadly to any reaction
involving the overall transfer of a proton and an electron.
Consequently, PCET reactions can occur in a sequential manner,
where the electron and proton are transferred in separate kinetic steps,
or can occur in a concerted process. Concerted processes can be
further described as hydrogen-atom transfer (HAT) or concerted
proton−electron transfer (CPET). HAT is often invoked when the
proton and electron are transferred to the same orbital or bond,
whereas CPET is used to describe cases where the electron and proton
are transferred to separate orbitals and/or bonds. With this definition,
CPET is common for transition metal-oxo or -hydroxo species, where
the electron is transferred to the metal and the proton is transferred to
the oxo or hydroxo ligand. A more rigorous distinction between HAT
and CPET has been offered by Hammes-Shiffer and co-workers (see
ref 17), and depends on whether the proton transfer is electronically
adiabatic (HAT) or nonadiabatic (CPET).
(42) Eroy-Reveles, A. A.; Leung, Y.; Beavers, C. M.; Olmstead, M.
M.; Mascharak, P. K. J. Am. Chem. Soc. 2008, 130, 4447−4458.
(43) Eichhorn, D. M.; Armstrong, W. H. J. Chem. Soc., Chem.
Commun. 1992, 85−87.
(44) Shirin, Z.; Borovik, A. S.; Young, V. G., Jr. Chem. Commun.
(Cambridge, U.K.) 1997, 1967−1968.
(45) Hubin, T. J.; McCormick, J. M.; Alcock, N. W.; Busch, D. H.
Inorg. Chem. 2001, 40, 435−444.
(46) Coggins, M. K.; Brines, L. M.; Kovacs, J. A. Inorg. Chem. 2013,
52, 12383−12393.
(47) Shook, R. L.; Peterson, S. M.; Greaves, J.; Moore, C.; Rheingold,
A. L.; Borovik, A. S. J. Am. Chem. Soc. 2011, 133, 5810−5817.
(48) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev.
(Washington, DC, U. S.) 2010, 110, 6961−7001.
(49) Hitomi, Y.; Iwamoto, Y.; Kodera, M. Dalton Trans. 2014, 43,
2161−2167.
(50) Hitomi, Y.; Arakawa, K.; Funabiki, T.; Kodera, M. Angew. Chem.,
Int. Ed. 2012, 51, 3448−3452.
(51) Coggins, M. K.; Zhang, M.-T.; Vannucci, A. K.; Dares, C. J.;
Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 5531−5534.
(52) Wu, A.; Mader, E. A.; Datta, A.; Hrovat, D. A.; Borden, W. T.;
Mayer, J. M. J. Am. Chem. Soc. 2009, 131, 11985−11997.
(53) Lansky, D. E.; Goldberg, D. P. Inorg. Chem. 2006, 45, 5119−
5125.
(17) Layfield, J. P.; Hammes-Schiffer, S. Chem. Rev. (Washington, DC,
U. S.) 2013, 114, 3466−3494.
(18) The kH/kD value was temperature-independent over the
measured range of 5−45 °C.
(19) Mullins, C. S.; Pecoraro, V. L. Coord. Chem. Rev. 2008, 252,
416−443.
(54) Seo, M. S.; Kim, J. Y.; Annaraj, J.; Kim, Y.; Lee, Y.-M.; Kim, S.-J.;
Kim, J.; Nam, W. Angew. Chem., Int. Ed. Engl. 2007, 46, 377−380.
(55) Evans, D. F.; Jakubovic, D. A. J. Chem. Soc., Dalton Trans. 1988,
2927−2933.
(56) Refinement: SHELXTL v2010.3−0; Bruker-AXS, E.C.P.:
Madison, WI.
(57) International Tables for Crystallography, Vol. A, 4th Edition;
Kluwer: Boston, 1996.
(58) Data Collection: SMART Software in APEX2 v2010.3−0 Suite;
Bruker-AXS, E.C.P.: Madison, WI.
(59) Data Reduction: SAINT Software in APEX2 v2010.3−0 Suite;
Bruker-AXS, E.C.P.: Madison, WI.
(60) Gupta, R.; Borovik, A. S. J. Am. Chem. Soc. 2003, 125, 13234−
13242.
(61) Ottaviani, M. F.; Garcia-Garibay, M.; Turro, N. J. Colloids Surf.,
A 1993, 72, 321−332.
(62) Manner, V. W.; Lindsay, A. D.; Mader, E. A.; Harvey, J. N.;
Mayer, J. M. Chem. Sci. 2012, 3, 230−243.
(63) Manner, V. W.; Markle, T. F.; Freudenthal, J. H.; Roth, J. P.;
Mayer, J. M. Chem. Commun. (Cambridge, U.K.) 2008, 256−258.
(64) Waidmann, C. R.; Zhou, X.; Tsai, E. A.; Kaminsky, W.; Hrovat,
D. A.; Borden, W. T.; Mayer, J. M. J. Am. Chem. Soc. 2009, 131, 4729−
4743.
(20) Tommos, C.; Babcock, G. T. Acc. Chem. Res. 1998, 31, 18−25.
(21) Tang, X.-S.; Randall, D. W.; Force, D. A.; Diner, B. A.; Britt, R.
D. J. Am. Chem. Soc. 1996, 118, 7638−7639.
(22) Siegbahn, P. E. M. Inorg. Chem. 2000, 39, 2923−2935.
(23) Zouni, A.; Witt, H.-T.; Kern, J.; Fromme, P.; Krauss, N.;
Saenger, W.; Orth, P. Nature (London, U.K.) 2001, 409, 739−743.
(24) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Britt, R. D. Proc. Natl.
Acad. Sci. U. S. A. 1995, 92, 9545−9549.
(25) Hoganson, C.; Lydakis-Simantiris, N.; Tang, X.-S.; Tommos, C.;
Warncke, K.; Babcock, G.; Diner, B.; McCracken, J.; Styring, S.
Photosynth. Res. 1995, 46, 177−184.
(26) Babcock, G. T. In Photosynthesis: From Light to Biosphere;
Kluwer: Dordrecht, The Netherlands, 1995; Vol. 2, pp 209−215.
(27) Baldwin, M. J.; Pecoraro, V. L. J. Am. Chem. Soc. 1996, 118,
11325−11326.
(28) Caudle, M. T.; Pecoraro, V. L. J. Am. Chem. Soc. 1997, 119,
3415−3416.
(29) Wang, K.; Mayer, J. M. J. Am. Chem. Soc. 1997, 119, 1470−1471.
(30) Bordwell, F. G.; Cheng, J. J. Am. Chem. Soc. 1991, 113, 1736−
1743.
(31) Larsen, A. S.; Wang, K.; Lockwood, M. A.; Rice, G. L.; Won, T.-
J.; Lovell, S.; Sadílek, M.; Turece
2002, 124, 10112−10123.
̌
k, F.; Mayer, J. M. J. Am. Chem. Soc.
(65) Kutt, A.; Leito, I.; Kaljurand, I.; Soovali, L.; Vlasov, V. M.;
(32) Mukhopadhyay, S.; Mandal, S. K.; Bhaduri, S.; Armstrong, W.
H. Chem. Rev. (Washington, DC, U. S.) 2004, 104, 3981−4026.
(33) Sano, Y.; Weitz, A. C.; Ziller, J. W.; Hendrich, M. P.; Borovik, A.
S. Inorg. Chem. 2013, 52, 10229−10231.
̈
̈
Yagupolskii, L. M.; Koppel, I. A. J. Org. Chem. 2006, 71, 2829−2838.
(66) Parsell, T. H.; Yang, M.-Y.; Borovik, A. S. J. Am. Chem. Soc.
2009, 131, 2762−2763.
(34) Baldwin, M. J.; Law, N. A.; Stemmler, T. L.; Kampf, J. W.;
Penner-Hahn, J. E.; Pecoraro, V. L. Inorg. Chem. 1999, 38, 4801−4809.
(35) Baldwin, M. J.; Stemmler, T. L.; Riggs-Gelasco, P. J.; Kirk, M. L.;
Penner-Hahn, J. E.; Pecoraro, V. L. J. Am. Chem. Soc. 1994, 116,
11349−11356.
(67) Lassalle-Kaiser, B.; Hureau, C.; Pantazis, D. A.; Pushkar, Y.;
Guillot, R.; Yachandra, V. K.; Yano, J.; Neese, F.; Anxolabehere-
Mallart, E. Energy Environ. Sci. 2010, 3, 924−938.
(68) Gupta, R.; Taguchi, T.; Borovik, A. S.; Hendrich, M. P. Inorg.
Chem. 2013, 52, 12568−12575.
(69) Borovik, A. S. Acc. Chem. Res. 2004, 38, 54−61.
(70) Leto, D. F.; Ingram, R.; Day, V. W.; Jackson, T. A. Chem.
Commun. (Cambridge, U.K.) 2013, 49, 5378−5380.
(71) Wang, Y.; Shi, S.; Wang, H.; Zhu, D.; Yin, G. Chem. Commun.
(Cambridge, U.K.) 2012, 48, 7832−7834.
(72) Porter, T. R.; Mayer, J. M. Chem. Sci. 2014, 5, 372−380.
(73) Rybak-Akimova, E. V. In Physical Inorganic Chemistry: Reactions,
Processes, and Applications; Bakac, A., Ed.; John Wiley & Sons, Inc.:
Hoboken, NJ, 2010; pp 109−188.
(74) Coggins, M. K.; Sun, X.; Kwak, Y.; Solomon, E. I.; Rybak-
Akimova, E.; Kovacs, J. A. J. Am. Chem. Soc. 2013, 135, 5631−5640.
(75) Kurahashi, T.; Kikuchi, A.; Shiro, Y.; Hada, M.; Fujii, H. Inorg.
Chem. 2010, 49, 6664−6672.
(36) Zhou, H.-B.; Wang, H.-S.; Chen, Y.; Xu, Y.-L.; Song, X.-J.; Song,
Y.; Zhang, Y.-Q.; You, X.-Z. Dalton Trans. 2011, 40, 5999−6006.
(37) Park, Y. J.; Ziller, J. W.; Borovik, A. S. J. Am. Chem. Soc. 2011,
133, 9258−9261.
(38) Cheng, B.; Fries, P. H.; Marchon, J.-C.; Scheidt, W. R. Inorg.
Chem. 1996, 35, 1024−1032.
(39) Goldsmith, C. R.; Cole, A. P.; Stack, T. D. P. J. Am. Chem. Soc.
2005, 127, 9904−9912.
(40) Shirin, Z.; Hammes, B. S.; Young, V. G.; Borovik, A. S. J. Am.
Chem. Soc. 2000, 122, 1836−1837.
(41) El Ghachtouli, S.; Lassalle-Kaiser, B.; Dorlet, P.; Guillot, R.;
Anxolabeh
Sci. 2011, 4, 2041−2044.
́ ̀
ere-Mallart, E.; Costentin, C.; Aukauloo, A. Energy Environ.
7633
dx.doi.org/10.1021/ic500943k | Inorg. Chem. 2014, 53, 7622−7634