Inorganic Chemistry
Communication
(4) Smith, B. M. Catalytic Methods for the Destruction of Chemical
Warfare Agents Under Ambient Conditions. Chem. Soc. Rev. 2008, 37,
470−478.
Oxidation of Sulfur Mustard Using Singlet Oxygen Generated by a
Pyrene-based Metal−Organic Framework. J. Mater. Chem. A 2016, 4,
13809−13813.
(24) Howarth, A. J.; Buru, C. T.; Liu, Y.; Ploskonka, A. M.; Hartlieb, K.
J.; McEntee, M.; Mahle, J. J.; Buchanan, J. H.; Durke, E. M.; Al-Juaid, S.
S.; Stoddart, J. F.; DeCoste, J. B.; Hupp, J. T.; Farha, O. K. Postsynthetic
Incorporation of a Singlet Oxygen Photosensitizer in a Metal−Organic
Framework for Fast and Selective Oxidative Detoxification of Sulfur
Mustard. Chem. - Eur. J. 2017, 23, 214−218.
(25) Atilgan, A.; Islamoglu, T.; Howarth, A. J.; Hupp, J. T.; Farha, O. K.
Detoxification of a Sulfur Mustard Simulant Using a BODIPY-
Functionalized Zirconium-based Metal−Organic Framework. ACS
Appl. Mater. Interfaces 2017, 9, 24555−24560.
(26) Goswami, S.; Miller, C. E.; Logsdon, J. L.; Buru, C. T.; Wu, Y.-L.;
Bowman, D. N.; Islamoglu, T.; Asiri, A. M.; Cramer, C. J.; Wasielewski,
M. R.; Hupp, J. T.; Farha, O. K. Atomistic Approach Toward Selective
Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with
Heavy-Chalcogen-Containing PCN-57 Analogues. ACS Appl. Mater.
Interfaces 2017, 9, 19535−19540.
(27) DeRosa, M. C.; Crutchley, R. J. Photosensitized Singlet Oxygen
and its Applications. Coord. Chem. Rev. 2002, 233−234, 351−371.
(28) Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-
based Metal−Organic Frameworks: Design, Synthesis, Structure, and
Applications. Chem. Soc. Rev. 2016, 45, 2327−2367.
(29) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. Doping Metal−Organic
Frameworks for Water Oxidation, Carbon Dioxide Reduction, and
Organic Photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445−13454.
(30) Zhang, W.-Q.; Li, Q.-Y.; Zhang, Q.; Lu, Y.; Lu, H.; Wang, W.;
Zhao, X.; Wang, X.-J. Robust Metal−Organic Framework Containing
Benzoselenadiazole for Highly Efficient Aerobic Cross-Dehydrogen-
ative Coupling Reactions under Visible Light. Inorg. Chem. 2016, 55,
1005−1007.
(31) Li, Q.-Y.; Ma, Z.; Zhang, W.-Q.; Xu, J.-L.; Wei, W.; Lu, H.; Zhao,
X.; Wang, X.-J. AIE-active Tetraphenylethene Functionalized Metal−
Organic Framework for Selective Detection of Nitroaromatic Explosives
and Organic Photocatalysis. Chem. Commun. 2016, 52, 11284−11287.
(32) Zhang, W.-Q.; Li, Q.-Y.; Cheng, J.-Y.; Cheng, K.; Yang, X.; Li, Y.;
Zhao, X.; Wang, X.-J. Ratiometric Luminescent Detection of Organic
Amines due to the Induced Lactam−lactim Tautomerization of Organic
Linker in a Metal−Organic Framework. ACS Appl. Mater. Interfaces
2017, 9, 31352−31356.
(5) Jang, Y. J.; Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G.
Update 1 of: Destruction and Detection of Chemical Warfare Agents.
Chem. Rev. 2015, 115, PR1−PR76.
(6) Picard, B.; Gouilleux, B.; Lebleu, T.; Maddaluno, J.; Chataigner, I.;
Penhoat, M.; Felpin, F.-X.; Giraudeau, P.; Legros, J. Oxidative
Neutralization of Mustard-Gas Simulants in an On-Board Flow Device
With In-line NMR Monitoring. Angew. Chem., Int. Ed. 2017, 56, 7568−
7572.
(7) Fallis, I. A.; Griffiths, P. C.; Cosgrove, T.; Dreiss, C. A.; Govan, N.;
Heenan, R. K.; Holden, I.; Jenkins, R. L.; Mitchell, S. J.; Notman, S.;
Platts, J. A.; Riches, J.; Tatchell, T. Locus-Specific Microemulsion
Catalysts for Sulfur Mustard (HD) Chemical Warfare Agent
Decontamination. J. Am. Chem. Soc. 2009, 131, 9746−9755.
(8) Carniato, F.; Bisio, C.; Psaro, R.; Marchese, L.; Guidotti, M.
Niobium(V) Saponite Clay for the Catalytic Oxidative Abatement of
Chemical Warfare Agents. Angew. Chem., Int. Ed. 2014, 53, 10095−
10098.
(9) Dong, J.; Hu, J.; Chi, Y.; Lin, Z.; Zou, B.; Yang, S.; Hill, C. L.; Hu, C.
A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simul-
taneous Oxidative and Hydrolytic Decontamination of Chemical
Warfare Agent Simulants. Angew. Chem., Int. Ed. 2017, 56, 4473−4477.
(10) Ringenbach, C. R.; Livingston, S. R.; Kumar, D.; Landry, C. C.
Vanadium-Doped Acid-Prepared Mesoporous Silica: Synthesis, Char-
acterization, and Catalytic Studies on the Oxidation of a Mustard Gas
Analogue. Chem. Mater. 2005, 17, 5580−5586.
(11) Livingston, S. R.; Landry, C. C. Oxidation of a Mustard Gas
Analogue Using an Aldehyde/O2 System Catalyzed by V-doped
Mesoporous Silica. J. Am. Chem. Soc. 2008, 130, 13214−13215.
(12) Bisio, C.; Carniato, F.; Palumbo, C.; Safronyuk, S. L.; Starodub,
M. F.; Katsev, A. M.; Marchese, L.; Guidotti, M. Nanosized Inorganic
Metal Oxides as Heterogeneous Catalysts for the Degradation of
Chemical Warfare Agents. Catal. Today 2016, 277, 192−199.
(13) Bromberg, L.; Pomerantz, N.; Schreuder-Gibson, H.; Hatton, T.
A. Degradation of Chemical Threats by Brominated Polymer Networks.
Ind. Eng. Chem. Res. 2014, 53, 18761−18774.
(14) Chen, L.; Yang, Y.; Jiang, D. CMPs as Scaffolds for Constructing
Porous Catalytic Frameworks: A Built-in Heterogeneous Catalyst With
High Activity and Selectivity Based on Nanoporous Metalloporphyrin
Polymers. J. Am. Chem. Soc. 2010, 132, 9138−9143.
(15) Bobbitt, N. S.; Mendonca, M. L.; Howarth, A. J.; Islamoglu, T.;
Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Metal-Organic Frameworks for
the Removal of Toxic Industrial Chemicals and Chemical Warfare
Agents. Chem. Soc. Rev. 2017, 46, 3357−3385.
(16) Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S.-Y.; Hupp, J.
T.; Farha, O. K. Catalytic Degradation of Chemical Warfare Agents and
Their Simulants by Metal-Organic Frameworks. Coord. Chem. Rev.
2017, 346, 101−111.
(17) DeCoste, J. B.; Peterson, G. W. Metal−Organic Frameworks for
Air Purification of Toxic Chemicals. Chem. Rev. 2014, 114, 5695−5727.
(18) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal−
Organic Frameworks. Chem. Rev. 2012, 112, 673−674.
(19) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The
Chemistry and Applications of Metal−Organic Frameworks. Science
2013, 341, 1230444.
(33) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick
Forming Metal Organic Frameworks with Exceptional Stability. J. Am.
Chem. Soc. 2008, 130, 13850−13851.
(34) For safety reasons, less toxic CEES rather than highly toxic HD
was used to mimic the detoxification study because CEES also contains
the same reactive −SCH2CH2Cl group.
(35) Patel, D. G.; Feng, F.; Ohnishi, Y.-y.; Abboud, K. A.; Hirata, S.;
Schanze, K. S.; Reynolds, J. R. It Takes More Than an Imine: The Role
of the Central Atom on the Electron-Accepting Ability of Benzotriazole
and Benzothiadiazole Oligomers. J. Am. Chem. Soc. 2012, 134, 2599−
2612.
(20) Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B.
Emerging Multifunctional Metal−Organic Framework Materials. Adv.
Mater. 2016, 28, 8819−8860.
(21) Liu, Y.; Howarth, A. J.; Hupp, J. T.; Farha, O. K. Selective
Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic
Metal−Organic Framework. Angew. Chem., Int. Ed. 2015, 54, 9001−
9005.
(22) Liu, Y.; Moon, S.-Y.; Hupp, J. T.; Farha, O. K. Dual-Function
Metal−Organic Framework as a Versatile Catalyst for Detoxifying
Chemical Warfare Agent Simulants. ACS Nano 2015, 9, 12358−12364.
(23) Liu, Y.; Buru, C. T.; Howarth, A. J.; Mahle, J. J.; Buchanan, J. H.;
DeCoste, J. B.; Hupp, J. T.; Farha, O. K. Efficient and Selective
D
Inorg. Chem. XXXX, XXX, XXX−XXX