Inorganic Chemistry
Article
́
(5) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S.
Oxidation of Alcohols to Aldehydes with Oxygen and Cupric Ion,
Mediated by Nitrosonium Ion. J. Am. Chem. Soc. 1984, 106, 3374−
3376.
EPR/UV-Vis/ATR-IR Spectroscopy. Angew. Chem., Int. Ed. 2015, 54,
11791−11794.
(23) Lewis, E. A.; Tolman, W. B. Reactivity of Dioxygen−Copper
Systems. Chem. Rev. 2004, 104, 1047−1076.
(24) Mirica, L. M.; X, O.; Stack, T. D. P. Structure and Spectroscopy
of Copper−Dioxygen Complexes. Chem. Rev. 2004, 104, 1013−1046.
(25) Hatcher, L. Q.; Karlin, K. D. Ligand Influences in Copper-
Dioxygen Complex-Formation and Substrate Oxidations. Adv. Inorg.
Chem. 2006, 58, 131−184.
(6) Gamez, P.; Arends, I. W. C. E.; Sheldon, R. A.; Reedijk, J. Room
Temperature Aerobic Copper−Catalysed Selective Oxidation of
Primary Alcohols to Aldehydes. Adv. Synth. Catal. 2004, 346, 805−
811.
(7) Kumpulainen, E. T. T.; Koskinen, A. M. P. Catalytic Activity
Dependency on Catalyst Components in Aerobic Copper-TEMPO
Oxidation. Chem. - Eur. J. 2009, 15, 10901−10911.
(8) Hoover, J. M.; Stahl, S. S. Highly Practical Copper(I)/TEMPO
Catalyst System for Chemoselective Aerobic Oxidation of Primary
Alcohols. J. Am. Chem. Soc. 2011, 133, 16901−16910.
(9) Steves, J. E.; Stahl, S. S. Copper(I)/ABNO-Catalyzed Aerobic
Alcohol Oxidation: Alleviating Steric and Electronic Constraints of
Cu/TEMPO Catalyst Systems. J. Am. Chem. Soc. 2013, 135, 15742−
15745.
(10) Sasano, Y.; Nagasawa, S.; Yamazaki, M.; Shibuya, M.; Park, J.;
Iwabuchi, Y. Highly Chemoselective Aerobic Oxidation of Amino
Alcohols into Amino Carbonyl Compounds. Angew. Chem., Int. Ed.
2014, 53, 3236−3340.
(11) Rogan, L.; Hughes, N. L.; Cao, Q.; Dornan, L. M.; Muldoon,
M. J. Copper(I)/ketoABNO Catalysed Aerobic Alcohol Oxidation.
Catal. Sci. Technol. 2014, 4, 1720−1725.
(26) Liu, J. J.; Diaz, D. E.; Quist, D. A.; Karlin, K. D. Copper(I)-
Dioxygen Adducts and Copper Enzyme Mechanisms. Isr. J. Chem.
2016, 56, 738−755.
(27) Elwell, C. E.; Gagnon, N. L.; Neisen, B. D.; Dhar, D.; Spaeth, A.
D.; Yee, G. M.; Tolman, W. B. Copper−Oxygen Complexes
Revisited: Structures, Spectroscopy, and Reactivity. Chem. Rev.
2017, 117, 2059−2107.
́
(28) Paul, P. P.; Tyeklar, Z.; Jacobson, R. R.; Karlin, K. D. Reactivity
Patterns and Comparisons in Three Classes of Synthetic Copper-
Dioxygen {Cu2-O2} Complexes: Implication for Structure and
Biological Relevance. J. Am. Chem. Soc. 1991, 113, 5322−5332.
(29) Shearer, J.; Zhang, C. X.; Zakharov, L. N.; Rheingold, A. L.;
Karlin, K. D. Substrate Oxidation by Copper-Dioxygen Adducts:
Mechanistic Considerations. J. Am. Chem. Soc. 2005, 127, 5469−
5483.
(30) CuII-superoxo complexes have been shown to react with
TEMPOH to generate CuIIOOH complexes: Maiti, D.; Lee, D. H.;
Gaoutchenova, K.; Wurtele, C.; Holthausen, M. C.; Sarjeant, A. A. N.;
Sundermeyer, J.; Schindler, S.; Karlin, K. D. Reactions of a Copper(II)
Superoxo Complex Lead to C−H and O−H Substrate Oxygenation:
Modeling Copper-Monooxygenase C−H Hydroxylation. Angew.
Chem., Int. Ed. 2008, 47, 82−85.
(12) Steves, J. E.; Preger, Y.; Martinelli, J. R.; Welch, C. J.; Root, T.
W.; Hawkins, J. M.; Stahl, S. S. Process Development of CuI/ABNO/
NMI-Catalyzed Aerobic Alcohol Oxidation. Org. Process Res. Dev.
2015, 19, 1548−1553.
(13) Ortiz, A.; Soumeillant, M.; Savage, S. A.; Strotman, N. A.;
Haley, M.; Benkovics, T.; Nye, J.; Xu, Z.; Tan, Y.; Ayers, S.; et al.
Synthesis of HIV-Maturation Inhibitor BMS-955176 from Betulin by
an Enabling Oxidation Strategy. J. Org. Chem. 2017, 82, 4958−4963.
(14) Ochen, A.; Whitten, R.; Aylott, H. E.; Ruffell, K.; Williams, G.
D.; Slater, F.; Roberts, A.; Evans, P.; Steves, J. E.; Sanganee, M. J.
Development of a Large-Scale Copper(I)/TEMPO-Catalyzed Aero-
bic Alcohol Oxidation for the Synthesis of LSD1 Inhibitor
GSK2879552. Organometallics 2019, 38, 176−184.
(31) Bailey, W. D.; Dhar, D.; Cramblitt, A. C.; Tolman, W. B.
Mechanistic Dichotomy in Proton-Coupled Electron-Transfer Re-
actions of Phenols with a Copper Superoxide Complex. J. Am. Chem.
Soc. 2019, 141, 5470−5480.
(32) Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen,
X.; Yu, W. CuCl/DABCO/4-HO-TEMPO-Catalyzed Aerobic
Oxidative Synthesis of 2-Substituted Quinazolines and 4H-3,1-
Benzoxazines. J. Org. Chem. 2012, 77, 1136−1142.
(33) Caneschi, A.; Grand, A.; Laugier, J.; Rey, P.; Subra, R. Three-
Center Binding of a Nitroxyl Free Radical to Copper(II) Bromide. J.
Am. Chem. Soc. 1988, 110, 2307−2309.
(34) Laugier, J.; Latour, J. M.; Caneschi, A.; Rey, P. Structural and
Redox Properties of the TEMPO Adducts of Copper(II) Halides.
Inorg. Chem. 1991, 30, 4474−4477.
(15) Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A. Cu(II)-
Nitroxyl Radicals as Catalytic Galactose Oxidase Mimics. Org. Biomol.
Chem. 2003, 1, 3232−3237.
(16) Michel, C.; Belanzoni, P.; Gamez, P.; Reedijk, J.; Baerends, E. J.
Activation of the C-H Bond by Electrophilic Attack: Theoretical
Study of the Reaction Mechanism of the Aerobic Oxidation of
Alcohols to Aldehydes by the Cu(bipy)2+/2,2,6,6-Tetramethylpiper-
idinyl-1-oxy Cocatalyst System. Inorg. Chem. 2009, 48, 11909−11920.
(17) Belanzoni, P.; Michel, C.; Baerends, E. J. Cu(bipy)2+/TEMPO-
Catalyzed Oxidation of Alcohols: Radical or Nonradical Mechanism?
Inorg. Chem. 2011, 50, 11896−11904.
(35) Walroth, R. C.; Miles, K. C.; Lukens, J. T.; MacMillan, S. N.;
Stahl, S. S.; Lancaster, K. M. Electronic Structural Analysis of
Copper(II)−TEMPO/ABNO Complexes Provides Evidence for
Copper(I)−Oxoammonium Character. J. Am. Chem. Soc. 2017, 139,
13507−13517.
(18) Hoover, J. M.; Ryland, B. L.; Stahl, S. S. Mechanism of
Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation. J. Am.
Chem. Soc. 2013, 135, 2357−2367.
(36) CuIOAc has been shown to react with O2 to produce CuIIOAc2
and Cu2O in the following stoichiometry: 4CuIOAc + 1/2O2
→
(19) Hoover, J. M.; Ryland, B. L.; Stahl, S. S. Copper/TEMPO-
Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of
Different Catalyst Systems. ACS Catal. 2013, 3, 2599−2605.
(20) Ryland, B. L.; McCann, S. D.; Brunold, T. C.; Stahl, S. S.
Mechanism of Alcohol Oxidation Mediated by Copper(II) and
Nitroxyl Radicals. J. Am. Chem. Soc. 2014, 136, 12166−12173.
(21) Badalyan, A.; Stahl, S. S. Cooperative Electrocatalytic Alcohol
Oxidation with Electron-Proton-Transfer Mediators. Nature 2016,
535, 406−410.
2CuIIOAc2 + Cu2O. See Edwards, D. A.; Richards, R. A
Reinvestigation of the Reaction between Copper(I) Acetate and
Oxygen. Inorg. Nucl. Chem. Lett. 1974, 10, 945−950.
(37) For TEMPO/TEMPOH redox potentials measured under
aqueous buffer conditions, see the following and refs 38 and 39: Kato,
Y.; Shimizu, Y.; Unoura, K.; Utsumi, H.; Ogata, T. Reversible Half-
Wave Potentials of Reduction Processes on Nitroxide Radicals.
Electrochim. Acta 1995, 40, 2799−2802.
(38) Gerken, J. B.; Pang, Y. Q.; Lauber, M. B.; Stahl, S. S. Structural
Effects on the pH-Dependent Redox Properties of Organic Nitroxyls:
Pourbaix Diagrams for TEMPO, ABNO, and Three TEMPO Analogs.
J. Org. Chem. 2018, 83, 7323−7330.
(39) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Tetramethylpiperidine N-
Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl
Species: Electrochemical Properties and Their Use in Electrocatalytic
Reactions. Chem. Rev. 2018, 118, 4834−4885.
(22) A rather different mechanism has been proposed by Bruckner
̈
and coworkers; however, the spectroscopic data reported in this study
have not been reconciled with the extensive mechanistic data (e.g.,
kinetics, relative rates of 1°/2° alcohols, DFT calculations, etc.)
̈
reported by others (cf. refs 15−21). Rabeah, J.; Bentrup, U.; Stoßer,
R.; Bruckner, A. Selective Alcohol Oxidation by a Copper TEMPO
Catalyst: Mechanistic Insights by Simultaneously Coupled Operando
̈
F
Inorg. Chem. XXXX, XXX, XXX−XXX