A R T I C L E S
Wu and Mayer
well for a number of reactions of iron-tris(R-diimine) complexes,
systems.17,23,24 Modern theoretical treatments of HAT and
PCET are much more sophisticated, including nonadiabatic
effects, hydrogen tunneling, and involvement of vibrational
excited states.25 They do not simply reduce to the cross
relation. Bridging the gap between experimental systems and
theoretical treatments is not simple because many of the
parameters in the theories are not experimentally accessible.26
This report describes what is perhaps the first comprehensive
data set for an HAT reaction: measurements of cross and self-
exchange rate constants and equilibrium constants for both H
and D as a function of temperature. To obtain such a data set,
we chose ruthenium complexes because of their substitution
inertness and the accessibility of the RuII and RuIII oxidation
states. Complexes with a 2-(2′-pyridyl)imidazole (py-imH)
ligand and two acac (2,4-pentanedionato) ligands have been
prepared and have the advantages of a single ionizable proton
kXX
X· + HX
8 XH + X·
(2)
including the unusual inverse temperature dependence for
the HAT reaction of [FeII(H2bip)3]2+ with TEMPO• (H2bip
) 2,2′-bi-1,4,5,6-tetrahydropyrimidine).18 The cross relation
has also been found to give good predictions, within 1-2
orders of magnitude, for some purely organic reactions17 and
for reactions of ruthenium and vanadium-oxo compounds.21
However, larger deviations from the predictions of eq 1 have
been found for osmium-anilido compounds22 and other
(6) Manner, V. W.; DiPasquale, A. G.; Mayer, J. M. J. Am. Chem. Soc.
2008, 130, 7210–7211.
and accessible redox potentials.27 RuII(acac)2(py-imH) (RuII
-
(7) (a) Herna´ndez-Garc´ıa, L.; Quintero, L.; Sa´nchez, M.; Sartillo-Piscil,
F. J. Org. Chem. 2007, 72, 8196. (b) Hartung, J. Eur. J. Org. Chem.
2001, 619. (c) Lucarini, M.; Pedrielli, P.; Pedulli, G. F.; Valgimigli,
L.; Gigmes, D.; Tordo, P. J. Am. Chem. Soc. 1999, 121, 11546.
(8) (a) Sheldon, R. A.; Arends, I. W. C. E. J. Mol. Catal. A: Chem. 2006,
251, 200. (b) Sheldon, R. A.; Arends, I. W. C. E. AdV. Synth. Catal.
2004, 346, 1051. (c) Sheldon, R. A.; Arends, I. W. C. E.; Brink, G.-
J. T.; Dijksman, A. Acc. Chem. Res. 2002, 35, 774. (d) Ishii, Y.;
Sakaguchi, S.; Iwahama, T. AdV. Synth. Catal. 2001, 343, 393. (e)
Koshino, N.; Saha, B.; Espenson, J. H. J. Org. Chem. 2003, 68, 9364.
(f) Koshino, N.; Cai, Y.; Espenson, J. H. J. Phys. Chem. A. 2003,
107, 4262. (g) Cai, Y.; Koshino, N.; Saha, B.; Espenson, J. H. J. Org.
Chem. 2005, 70, 238. (h) Amorati, R.; Lucarini, M.; Mugnaini, V.;
Pedulli, G. F. J. Org. Chem. 2003, 68, 1747. (i) Barreca, A. M.;
Sjo¨gren, B.; Fabbrini, M.; Galli, C.; Gentili, P. Biocatal. Biotransform.
2004, 22, 105.
imH) undergoes clean hydrogen atom transfer to excess
TEMPO• (transferring one proton and one electron) to give
RuIII(acac)2(py-im) (RuIIIim) and TEMPO-H (eq 3),27 making
this reaction appropriate for HAT studies and Marcus analysis.
The deuterium transfer from RuII(acac)2(py-imD) (RuIIimD)
to TEMPO• is much slower, with a large deuterium kinetic
isotope effect (KIE), k3H/k3D ) 23 ( 3 at 298 K. As discussed
below, this and other results indicate that hydrogen tunneling
is occurring. Tunneling is also implicated in the HAT self-
exchange between RuIIimH and RuIIIim. Tunneling has come
to be viewed as a seminal feature of hydrogen transfer reactions,
from catalysis to laboratory reactions to enzymatic processes.1
HAT from a fatty-acid substrate to the FeIIIOH active site in
lipoxygenase enzymes, for instance, exhibits large kH/kD values
of up to ∼80.9 In light of the data reported here for ruthenium
HAT reactions and the involvement of tunneling, the applicabil-
ity of the Marcus cross relation is discussed.
(9) (a) Knapp, M. J.; Meyer, M.; Klinman, J. P. In ref 1, Volume 4, pp
1241-1284. (b) Knapp, M. J.; Rickert, K.; Klinman, J. P. J. Am. Chem.
Soc. 2002, 124, 3865. (c) Lewis, E. R.; Johansen, E.; Holman, T. R.
J. Am. Chem. Soc. 1999, 121, 1395.
(10) (a) Mayer, J. M. Acc. Chem. Res. 1998, 31, 441. (b) Gardner, K. A.;
Mayer, J. M. Science 1995, 269, 1849.
(11) Partenheimer, W. Catal. Today 1995, 23, 69.
(12) (a) Huynh, M. H. V.; Meyer, T. J. Chem. ReV. 2007, 107, 5004. (b)
Fecenko, C. J.; Thorp, H. H.; Meyer, T. J. J. Am. Chem. Soc. 2007,
129, 15098. (c) Meyer, T. J.; Huynh, M. H. V. Inorg. Chem. 2003,
42, 8140. (d) Hodgkiss, J. M.; Rosenthal, J.; Nocera, D. G. In ref 1,
Volume 2, pp 503-562. (e) Stubbe, J.; Nocera, D. G.; Yee, C. S.;
Chang, M. C. Y. Chem. ReV. 2003, 103, 2167. (f) Cukier, R. I.; Nocera,
D. G. Annu. ReV. Phys. Chem. 1998, 49, 337. (g) Hammes-Schiffer,
S. In ref 1, Volume 2, pp 479-502. (h) Irebo, T.; Reece, S. Y.; Sjo¨din,
M.; Nocera, D. G.; Hammarstro¨m, L. J. Am. Chem. Soc. 2007, 129,
15462. (i) Lomoth, R.; Magnuson, A.; Sjo¨din, M.; Huang, P.; Styring,
S.; Hammarstro¨m, L. Photosynth. Res. 2006, 87, 25. (j) Costentin,
C.; Robert, M.; Save´ant, J.-M. J. Am. Chem. Soc. 2007, 129, 9953.
(13) (a) Markle, T. F.; Rhile, I. J.; DiPasquale, A. G.; Mayer, J. M. Proc.
Natl. Acad. Sci. U.S.A. 2008, 105, 8185–8190. (b) Markle, T. F.;
Mayer, J. M. Angew. Chem., Int. Ed. 2008, 47, 738. (c) Rhile, I. J.;
Markle, T. F.; Nagao, H.; DiPasquale, A. G.; Lam, O. P.; Lockwood,
M. A.; Rotter, K.; Mayer, J. M. J. Am. Chem. Soc. 2006, 128, 6075.
(d) Rhile, I. J.; Mayer, J. M. J. Am. Chem. Soc. 2004, 126, 12718. (e)
Lingwood, M.; Hammond, J. R.; Hrovat, D. A.; Mayer, J. M.; Borden,
W. T. J. Chem. Theory Comput. 2006, 2, 740. (f) Mayer, J. M.; Hrovat,
D. A.; Thomas, J. L.; Borden, W. T. J. Am. Chem. Soc. 2002, 124,
11142.
Results
I. Equilibrium Constant Measurements. The reaction of
RuIIimH with 1 equiv of TEMPO• in CD3CN at room
temperature under N2 rapidly yields RuIIIim and TEMPO-H
(eq 3), as observed by 1H NMR and UV-vis spectroscopies.27
The equilibrium constant K3H was determined by titrating a
MeCN solution of RuIIIim (0.48 mM) with TEMPO-H
(19) (a) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.
(b) Sutin, N. Prog. Inorg. Chem. 1983, 30, 441.
(20) fXY ) exp[(ln(KXY))2/(4 ln(kXXkYY/Z2))], where the collision frequency,
(14) (a) Tishchenko, O.; Truhlar, D. G.; Ceulemans, A.; Nguyen, M. T.
J. Am. Chem. Soc. 2008, 130, 7000. (b) Neta, P.; Grodkowski, J. J.
Phys. Chem. Ref. Data 2005, 34, 109. (c) Nielsen, M. F.; Ingold, K. U.
J. Am. Chem. Soc. 2006, 128, 1172. (d) Foti, M.; Ingold, K. U.;
Lusztyk, J. J. Am. Chem. Soc. 1994, 116, 9440. (e) Skone, J. H.;
Soudackov, A. V.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2006, 128,
16655.
Z ≈ 1011 M-1 s-1 19
.
(21) (a) Bryant, J. R.; Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 10351–
10361. (b) Waidmann, C. R.; Zhou, X.; Kaminsky, W.; Tsai, E.;
Hrovat, D. A.; Borden, W. T.; Mayer, J. M. Manuscript in preparation.
(22) Soper, J. D.; Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 12217.
(23) Manner, V. W.; Lindsay, A.; Mayer, J. M. Work in progress.
(24) Goldsmith, C. R.; Jonas, R. T.; Stack, T. D. P. J. Am. Chem. Soc.
2002, 124, 83–96.
(15) (a) Ingold, K. U. In Free Radicals; Kochi, J. K., Ed.; Wiley: New
York, 1973; Chapter 2, pp 69ff. (b) Russell, G. A. In Free Radicals;
Kochi, J. K., Ed.; Wiley: New York, 1973; Chapter 7, pp 283-293.
(c) Tedder, J. M. Angew. Chem., Int. Ed. Engl. 1982, 21, 401.
(16) Mader, E. A.; Davidson, E. R.; Mayer, J. M. J. Am. Chem. Soc. 2007,
129, 5153.
(25) (a) References 1, 12, and 14a. (b) Hammes-Schiffer, S.; Hatcher, E.;
Ishikita, H.; Skone, J. H.; Soudackov, A. V. Coord. Chem. ReV. 2008,
252, 384–394. (c) Marcus, R. A. Phil. Trans. R. Soc. London, Ser. B
2006, 361, 1445–1455. (d) Cukier, R. I. J. Phys. Chem. B 2002, 106,
1746–1757. (e) Kotelnikov, A. I.; Medvedev, E. S.; Medvedev, D. M.;
Stuchebrukhov, A. A. J. Phys. Chem. B 2001, 105, 5789–5796.
(26) For example, see: (a) Reference 12b. (b) Hodgkiss, J. M.; Damrauer,
N. H.; Presse, S.; Rosenthal, J.; Nocera, D. G. J. Phys. Chem. B. 2006,
110, 18853–18858.
(17) Roth, J. P.; Yoder, J. C.; Won, T.-J.; Mayer, J. M. Science 2001, 294,
2524.
(18) Mader, E. A.; Larsen, A. S.; Mayer, J. M. J. Am. Chem. Soc. 2004,
126, 8066.
9
14746 J. AM. CHEM. SOC. VOL. 130, NO. 44, 2008