3
References
10
11
78
70
1.
(a) Prajapati, N. P.; Vekariya, R. H.; Borad, M. A.; Patel, H. D. RSC
Adv. 2014, 4, 60176; (b) Kamal, A.; Syed, M. A. H.; Mohammed, S.
M. Expert Opin. Ther. Pat. 2015, 25, 335; (c) Keri, R. S.; Patil, M.
R.; Patil, S. A.; Budagumpi, S. Eur. J. Med. Chem 2015, 89, 207; ( )
errera ano Ba ari e , A. G.; Santiago, A. N. J.
Agric. Food Chem. 2015, 63, 3681.
2.
(a) Seierstad, M.; Breitenbucher, J. G. J. Med. Chem. 2008, 51, 7327;
(b) Skinner, W.; Gualtiere, F.; Brody, G.; Fieldsteel, A. J. Med.
Chem. 1971, 14, 546; (c) Frotscher, M.; Hartmann, R. W. J. Med.
Chem. 2012, 55, 2469; (d) Tang, G.; Nikolovska-Coleska, Z.; Qiu,
S.; Yang, C.-Y.; Guo, J.; Wang, S. J. Med. Chem. 2008, 51,717; (e)
Tsutsumi, S.; Okonogi, T.; Shibahara, S.; Ohuchi, S.; Hatsushiba, E.;
Patchett, A. A.; Christensen, B. G. J. Med. Chem. 1994, 37, 3492; (f)
Zhou, C.; Garcia-Calvo, M.; Pinto, S.; Lombardo, M.; Feng, Z.;
Bender, K.; Pryor, K. D.; Bhatt, U. R.; Chabin, R. M.; Geissler, W.
M. J. Med. Chem. 2010, 53, 7251; (g) Ferraris, D.; Ko, Y.-S.;
Calvin, D.; Chiou, T.; Lautar, S.; Thomas, B.; Wozniak, K.; Rojas,
C.; Kalish, V.; Belyakov, S. Bioorg. Med. Chem. Lett. 2004, 14,
5579; (h) Myllymäki, M. J.; Saario, S. M.; Kataja, A. O.; Castillo-
Melendez, J. A.; Nevalainen, T.; Juvonen, R. O.; Järvinen, T.;
Koskinen, A. M. J. Med. Chem. 2007, 50, 4236.
a
Reaction conditions : 2-aminobenzenethiol (1.2 mmol), aryl-alkyl
ketones (1.0 mmol), CuBr2 (1.0 mmol) in ethanol at reflux temperature
b
for 8h under Oxygen atmosphere.
Structures were confirmed by
comparison of their NMR spectra, Mass spectra and melting points with
literature data. c Isolated yields after column chromatography.
It was observed that in case of aliphatic ketones, such as methyl
ethyl ketone; isobutyl-2-methyl ketone, no desired products were
obtained. It was also observed that, substituted 2-
aminothiophenol like 2-amino-4-chlorobenzenethiol also reacted
with acetophenone to afford the desired product 5-chloro-1, 3-
benzothiazol-2-yl(phenyl)methanone in 75% yield.
A plausible reaction mechanism for the tandem reaction is
illustrated in Scheme 2. In the first step, bromination of aryl-alkyl
ketones (A) gives α-bromoketones (B).7a Later nucleophilic
substitution of amines with α-bromoketones (B) generates α-
3.
4.
(a) Wu, X. F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2010, 49, 7316; (b) Boga, C.; Stengel, R.; bdayem,
R.; Del Vecchio, E.; Forlani, L.; Todesco, P. E. J. Org. Chem. 2004,
69, 8903
aminoketones (C).7b Further, bromination of α-aminoketones (C)
(a) Xue, W.-J.; Guo, Y.-Q.; Gao, F.-F.; Li, H.-Z.; Wu, A.-X. Org.
Lett. 2013, 15, 890; (b) Zhou, Z.-L.; Fang, T.; Tang, R.-Y.; Zhang,
X.-G.; Deng, C.-L. Synlett 2014, 25, 255; (c) Nguyen, T. B.;
Pasturaud, K.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2015, 17,
2562; (d) Fan, X.; He, Y.; Zhang, X.; Guo, S.; Wang, Y. Tetrahedron
2011, 67, 6369; (e) Hyvl, J.; Srogl, J. Eur. J. Org. Chem. 2010, 2010,
2849; (f) Mu, X.J.; Zou,J.P.; Zeng,R.S.; Wu,J.C. Tetrahedron Lett.
2005, 46, 4345; (g) Yang, K.; Chen,X. ;Wang, Y.; Li, W.; Kadi, A. A
.; Fun, H-K .; Sun,H.; Zhang,Y.; Li,G.; Lu,H. J. Org. Chem. 2015,
29, 11065; (h) Jiang, J.; Zou,H.; Dong,Q.; Wang, R.; Lu,L.; Zhu.Y.;
He,W. J. Org. Chem. 2016, 81, 51.
leads to intermediate (D).4h,
Subsequent intramolecular
7c
nucleophilic attack by thiol leads to ring closure, generating
intermediate (E). Finally, the intermediate (E) undergoes
oxidative dehydrogenation to afford the desired product.
5.
(a) Zhu, Y.-P.; Lian, M.; Jia, F.-C.; Liu, M.-C.; Yuan, J.-J.; Gao, Q.-
H.; Wu, A.-X. Chem. Commun. 2012, 48, 9086; (b) Zhu, Y.-p.; Jia,
F.-c.; Liu, M.-c.; Wu, A.-x. Org. Lett. 2012, 14, 4414; (c) Wang, J.;
Zhang, X.-Z.; Chen, S.-Y.; Yu, X.-Q. Tetrahedron 2014, 70, 245; (d)
Liu, S.; Chen, R.; Chen, H.; Deng, G.-J. Tetrahedron Lett. 2013, 54,
3838; (e) Feng, Q.; Song, Q. Adv. Synth. Catal. 2014, 356, 2445; (f)
Gao, Q.; Wu, X.; Jia, F.; Liu, M.; Zhu, Y.; Cai, Q.; Wu, A. J. Org.
Chem. 2013, 78, 2792.
Scheme 2. Plausible reaction mechanism
In conclusion, we have developed simple, mild and efficient
aerobic, copper-II mediated tandem protocol for the synthesis of
2-aroylbenzothiazoles. The protocol uses inexpensive copper salt,
economic and environmentally friendly oxygen as the oxidant
along with readily available aryl alkyl ketones as a starting
material. Various functional groups were well tolerated leading to
moderate to good yield. Absence of DMSO as a solvent suggests
that the reaction follows a distinct path from Kornblum oxidation
of alpha haloketones.
6.
7.
(a) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W. Chem.Rev. 2014, 115,
1622; (b) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.;
Kozlowski, M. C. Chem. Rev. 2013, 113, 6234; (c) Liao, Q.; Yang,
X.; Xi, C. J. Org. Chem. 2014, 79, 8507.
(a) King, L.C.; Ostrum, G.K. J. Org. Chem. 1964, 29, 3459; (b)
Brown, D.S.; Elliott, M.C.; Moody, J.C.; Mowlem, T.J.; Marino, J.P.;
Padwa, A. J. Org. Chem. 1994, 59, 2447; (c) Wei, W.; Shao, Y.; Hu,
H.;Zhang, F.; Zhang, C.; Xu, Y.; Wan, X. J. Org. Chem. 2012, 77,
7157.
8.
General Procedure for preparation of 2- aroylbenzothiazoles
A mixture of aryl-alkyl ketones (1.0 mmol), 2-aminobenzenethiol
(1.2 mmol) and CuBr2 (1.0 mmol) was stirred in ethanol. The reaction
mixture was bubbled with oxygen (balloon) and was heated to reflux
temperature for 8 hours. After completion of the reaction (monitored
by TLC), the reaction mixture was diluted with water, and then
extracted with ethyl acetate. The organic extract was washed with
Na2S2O3 solution, dried over anhydrous Na2SO4 and concentrated
under reduced pressure to get the crude product. The product was
then purified with silica gel column chromatography (Hexane-
EtOAc).
Acknowledgment
JKM and DAM thank University Grants Commission India
(UGC-SAP) for financial support. VNT thanks the Science and
Engineering Research Board (SERB), New Delhi, India, for
providing financial support.
Supplementary data
Experimental procedure and spectral data associated with this
1016/j.tetlet.2016