TABLE 2. IR and 1H NMR Spectral Data of Products
Com-
pound*
IR spectrum, ν, cm-1
1Н NMR spectrum, δ, ppm. (J, Hz)
3a
—
6.99 (1H, d, J = 9.5, Н-6); 7.57 (3Н, m, С6Н5);
8.17 (2H, m, С6Н5); 8.38 (1H, d, J = 9.5, Н-5)
3b
3050, 1700 (C=O), 1605
C=N), 1560, 1520, 1480,
1410, 1370, 1310
6.99 (1H, d, J = 9.4, Н-6); 7.61 (2Н, d, J = 7.6, m-HAr);
8.16 (2H, d, J = 7.6, о-HAr); 8.42 (1H, d, J = 9.4, Н-5)
3c
3050, 1700 (C=O), 1620
C=N), 1560, 1490, 1450,
1420, 1370
6.99 (1H, d, J = 9.6, Н-6); 7.40 (2Н, m, m-H Ar);
8.19 (2H, m, о-HAr); 8.42 (1H, d, J = 9.6, Н-5)
5a
5b
3100, 1610, 1550, 1500, 1480, 7.45-7.59 (6Н, m, HAr); 7.96 (1Н, s, Н-6);
1460, 1400, 1330, 1300, 1290 8.16 (2Н, m, HAr); 8.32 (2Н, m, HAr)
3100, 2830, 1620, 1590, 1530, 3.82 (3H, s, СН3О); 7.07 (2Н, d, J = 8.9, m-HAr);
1500, 1470, 1430, 1320, 1310 7.59 (3Н, m, НAr); 7.90 (1Н, s, H-6);
8.07 (2Н, d, J = 8.9, о-HAr); 8.28 (2Н, m, HAr)
5c
5d
5е
3100, 3050, 1600, 1550, 1500, 7.61 (5Н, m, HAr); 7.96 (1Н, s, Н-6);
1470, 1450, 1410, 1320
3100, 1610, 1530, 1500, 1470, 7.40 (2Н, m, HAr); 7.64 (3Н, m, HAr); 7.95 (1Н, s, H-6);
1420, 1320, 1280, 1230 8.16 (2Н, m, HAr); 8.30 (2Н, m, HAr)
8.09 (2Н, d, J = 9.0, o-HAr); 8.29 (2Н, m, HAr)
3050, 1610, 1580, 1530, 1500, 3.84 (3H, s, СН3О); 7.11 (2Н, d, J = 8.4, m-HAr);
1470, 1430, 1320, 1310, 1270 7.70 (2Н, d, J = 8.1, m-HAr); 7.99 (1Н, s, H-6);
8.09 (2Н, d, J = 8.4, o-HAr); 8.36 (2Н, d, J = 8.1, o-HAr)
8b
3000, 1620, 1500, 1460, 1410, 4.44 (2H, s, SCH2); 7.28-7.68 (7Н, m, HAr);
1340, 1280
7.99 (2Н, d, J = 9.1, o-HAr)
8с
3000, 1610, 1590, 1510, 1460, 3.80 (3Н, s, СН3О); 4.40 (2H, s, SCH2);
1410, 1350, 1300, 1270
7.09 (2Н, d, J = 8.9, m-HAr); 7.31 (3Н, m, C6H5);
7.42 (2Н, m, C6H5); 7.89 (2Н, d, J = 8.9, o-HAr)
_______
* The IR spectrum of 3a corresponds to the spectrum reported by Heindel
1
[4]. The IR and H NMR spectra of 8a correspond to the spectra given by
Barbier et al. [11].
We note that, in both cases, reaction products 3a-c and 5a-e contain aromatic heterocyclic systems,
while starting compounds 1a-g have a single thiazole ring. This is evidence of the greater chemical and
thermodynamic stability of heteroaromatic compounds in comparison with alicyclic heterocycles.
EXPERIMENTAL
1
The H NMR spectra were taken on a Varian 300 spectrometer at 300 MHz for solutions in DMSO-d6
with TMS as the internal standard. The IR spectra were taken for KBr pellets on a UR-20 spectrometer.
2-Aryl-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones 3a-c and Aryl Methyl Ketones 4a,b. A mixture
of 2-aryl[1,2,4]triazolo[5,1-b][1,3]thiazin-7-one 1a-c (10 mmol) and aryl bromomethyl ketones 2a or 2b
(10 mmol) was heated for 4 min at 200°C and then cooled. The reaction mixture was extracted with three 7-ml
ether portions. The precipitate of 3a-c was filtered off, dried, and recrystallized from acetic acid. The ethereal
extract containing ketone 4a or 4b was evaporated and the resultant oil was extracted with three 5-ml hot hexane
portions. Hexane was evaporated and 4a or 4b was distilled in vacuum. The yields and physical constants of 3a-
c, 4a,b are given in Table 1.
2,5-Diaryl[1,3]thiazolo[3,2-b][1,2,4]triazolo[5,1-b][1,3]-triazoles 5a-e and 3-Phenyl-2-propenoic
Acid (6). A mixture of 2,5-diaryl[1,2,4]triazolo[5,1-b][1,3]thiazin-7-one 1d-g and aryl bromomethyl ketone 2a
or 2b (10 mmol) was heated for 7 min at 150°C and cooled. The reaction mixture was treated with three 10-ml
785