U.R. Pokharel et al.
Polyhedron 191 (2020) 114805
[4] M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha,
Molecular paneling via coordination, Chem. Commun. (2001) 509–518,
[5] B.J. Holliday, C.A. Mirkin, Strategies for the construction of supramolecular
compounds through coordination chemistry, Angew. Chem., Int. Ed., 40 (2001)
4. Conclusions
In order to understand the roles of spacer groups and chelating
pockets in determining coordination behavior of ligands and
dimensions of the overall complexes, we studied the complexation
of Ni(II) with tetradentate N-donating ligands separated by xyly-
lene spacers by altering two parameters: 1) the structure of the
xylylene core (o-, m-, p-), and 2) the nature of the chelating groups.
Pyridyltriazoles have been used extensively as coordination pock-
ets in supramolecular chemistry. However, to the best of our
knowledge, this is the first report of synthesis of tetradentate bis
(aminomethyltriazole) ligands and their complexes. Regardless of
the steric constrains of intra-ligand strands, all three isomeric xyly-
lene spacers gave binuclear triple helical complexes. The com-
plexes having an o-xylylene spacer gave roughly spherical shape
with asymmetrically folded ligand strands, while the p-xylylene-
bridged complexes are approximately cylindrical with a more sym-
metrical arrangement of ligands. Molecules with a common xyly-
lene spacer have similar shapes, although the details of the solid-
state packing of these complexes vary in a less predictable way.
2022-2043;
doi:
10.1002/1521-3773(20010601)40:11<2022::AID-
ANIE2022>3.0.CO;2-D.
[6] T.R. Cook, P.J. Stang, Recent developments in the preparation and chemistry of
metallacycles and metallacages via coordination, Chem. Rev. 115 (2015) 7001–
[7] C.R.K. Glasson, L.F. Lindoy, G.V. Meehan, Recent developments in the d-block
metallo-supramolecular chemistry of polypyridyls, Coord. Chem. Rev. 252
[8] C. Zhao, J. Geng, L. Feng, J. Ren, X. Qu, Chiral metallo-supramolecular
complexes selectively induce human telomeric G-quadruplex formation
under salt-deficient conditions, Chem. - Eur. J. 17 (2011) 8209–8215, https://
[9] H. Yu, X. Wang, M. Fu, J. Ren, X. Qu, Chiral metallo-supramolecular complexes
selectively recognize human telomeric G-quadruplex DNA, Nucleic Acids Res.
[10] C. Ducani, A. Leczkowska, N.J. Hodges, M.J. Hannon, Noncovalent DNA-binding
metallo-supramolecular cylinders prevent DNA transactions in vitro, Angew.
Chem., Int. Ed., 49 (2010) 8942-8945. doi: 10.1002/anie.201004471.
[11] L. Cardo, V. Sadovnikova, S. Phongtongpasuk, N.J. Hodges, M.J. Hannon,
Arginine conjugates of metallo-supramolecular cylinders prescribe helicity
and enhance DNA junction binding and cellular activity, Chem. Commun., 47
(2011) 6575-6577. doi: 10.1039/c1cc11356a.
[12] A. Oleksy, A.G. Blanco, R. Boer, I. Uson, J. Aymami, A. Rodger, M.J. Hannon, M.
Coll, Molecular recognition of
metallosupramolecular helicate, Angew. Chem. Int. Ed., 45 (2006) 1227-
1231. doi: 10.1002/anie.200503822.
a
three-way DNA junction by
a
CRediT authorship contribution statement
Uttam R. Pokharel: Conceptualization, Methodology, Investiga-
tion, Visualization, Writing - original draft, Writing - review & edit-
ing. Jordan C. Theriot: Methodology, Investigation. Frank R.
Fronczek: Investigation, Formal analysis, Resources, Validation,
Writing - review & editing. Andrew W. Maverick: Funding acqui-
sition, Conceptualization, Visualization, Writing - review & editing.
[13] H. Yu, M. Li, G. Liu, J. Geng, J. Wang, J. Ren, C. Zhao, X. Qu,
Metallosupramolecular complex targeting an
a/b discordant stretch of
[14] R. Krämer, J.-M. Lehn, A. De Cian, J. Fischer, Self-assembly, structure, and
spontaneous resolution of a trinuclear triple helix from an oligobipyridine
ligand and NiII Ions, Angew. Chem. Int. Ed. Engl. 32 (1993) 703–706, https://
[15] M.-H. Shu, C.-Y. Duan, W.-Y. Sun, Y.-J. Fu, D.-H. Zhang, Z.-P. Bai, W.-X. Tang,
Synthesis, structure and characterization of novel nickel(II) and iron(II)
Declaration of Competing Interest
complexes with
a
5,5’-bis[2-(2,2’-bipyridin-6-yl)-ethyl]-2,2’-bipyridine
ligand, J. Chem. Soc., Dalton Trans., (1999) 2317-2322. doi: 10.1039/A901835B.
[16] C.R.K. Glasson, G.V. Meehan, C.A. Motti, J.K. Clegg, P. Turner, P. Jensen, L.F.
Lindoy, New nickel(II) and iron(II) helicates and tetrahedra derived from
expanded quaterpyridines, Dalton Trans., 40 (2011) 10481-10490. doi:
10.1039/c1dt10667h.
The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
[17] J.D. Crowley, P.H. Bandeen, A multicomponent CuAAC ‘‘click” approach to a
library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: new building
blocks for the generation of metallosupramolecular architectures, Dalton
Trans., 39 (2010) 612-623. doi: 10.1039/B911276F.
[18] L. Liang, D. Astruc, The copper(I)-catalyzed alkyne-azide cycloaddition
(CuAAC) ‘‘click” reaction and its applications. An overview, Coord. Chem.
[19] A.W. Maverick, S.C. Buckingham, Q. Yao, J.R. Bradbury, G.G. Stanley,
Intramolecular coordination of bidentate Lewis bases to a cofacial binuclear
[20] C. Pariya, F.R. Fronczek, A.W. Maverick, Bis(o-phenylenebis(acetylacetonato))
dicopper(II): A strained copper(II) dimer exhibiting a wide range of colors in
[21] C. Pariya, C.R. Sparrow, C.-K. Back, G. Sandí, F.R. Fronczek, A.W. Maverick,
Copper b-diketonate molecular squares and their host–guest reactions,
[22] U.R. Pokharel, F.R. Fronczek, A.W. Maverick, Cyclic pyridyltriazole–Cu(II)
dimers as supramolecular hosts, Dalton Trans., 42 (2013) 14064-14067. doi:
10.1039/C3DT52208C.
[23] U.R. Pokharel, F.R. Fronczek, A.W. Maverick, Reduction of carbon dioxide to
oxalate by a binuclear copper complex, Nat. Commun. 5 (2014) 5883, https://
[24] A.W. Maverick, F.L. Klavetter, Cofacial binuclear copper complexes of a bis(b-
diketone) ligand, Inorg. Chem., 23 (1984) 4129-4130. doi: 10.1021/ic00193a005.
[25] J.D. Crowley, D.A. McMorran, ‘‘Click-triazole” coordination chemistry:
exploiting 1,4-disubstituted-1,2,3-triazoles as ligands, in: J. Košmrlj (Ed.),
Click Triazoles, Topics in Heterocyclic Chemistry, 28, Springer-Verlag, Berlin,
[26] H. Struthers, D. Viertl, M. Kosinski, B. Spingler, F. Buchegger, R. Schibli, Charge
dependent substrate activity of C30 and N3 functionalized, organometallic
technetium and rhenium-labeled thymidine derivatives toward human
Acknowledgments
This research was supported in part by the Louisiana Board of
Regents Support Fund (through the Louisiana EPSCoR project,
NSF award number EPS-1003897) and Albemarle Corporation,
and by the LSU Philip W. West Professorship. J. C. T. is grateful
for partial support through the California Institute of Technology
SURF program. The sponsors had no role in the design, execution,
or publication of this work.
Appendix A. Supplementary data
CCDC 2010484, 2010486, 2010485, and 2010487 contain the
supplementary crystallographic data for structures 1a, 3a, 1b,
and 3b, respectively. These data can be obtained free of charge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data to this article can be found online at
References
[1] M. Albrecht, ‘‘Let’s twist again”-double-stranded, triple-stranded, and circular
[2] S.J. Dalgarno, N.P. Power, J.L. Atwood, Metallo-supramolecular capsules, Coord.
[3] M. Fujita, M. Tominaga, A. Hori, B. Therrien, Coordination assemblies from a Pd
(II)-cornered square complex, Acc. Chem. Res., 38 (2005) 369-378. doi:
10.1021/ar040153h.
[27] A. Maisonial, P. Serafin, M. Traïkia, E. Debiton, V. Théry, D.J. Aitken, P. Lemoine,
B. Viossat, A. Gautier, Click chelators for platinum-based anticancer drugs, Eur.
8