The Journal of Organic Chemistry
Featured Article
Properties and Application; Cambrige University Press: Cambrige,
2004.
Angew. Chem., Int. Ed. 2001, 40, 2004−2021. (d) Kolb, H. C.;
Sharpless, K. B. Drug Discovery Today 2003, 8, 1128−1137.
(15) The copper-mediated amination of ethyl 4-bromobenzoate (1)
with TMSN3 and 2-aminoethanol in DMA in the presence of
ethynylbenzene (4) was monitored by the reaction-monitoring FT-IR
spectrometer, but the formation of ethyl 4-azidobenzoate (3) was not
confirmed (2126 cm−1, see the Supporting Information). The IR study
indicated that the reaction proceeded in a somewhat different manner
from the case without 4 probably because of the involvement of
copper with acetylene, e.g., a possible formation of copper acetylide.
The data are shown in the Supporting Information.
(2) For an example using palladium catalyst, see: (a) Shen, Q.;
Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028−10029. (b) Surry, D.
S.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 10354−10355.
(c) Schulz, T.; Torborg, C.; Enthaler, S.; Schaffner, B.; Dumrath, A.;
̈
Spannenberg, A.; Neumann, H.; Borner, A.; Beller, M. Chem.Eur. J.
̈
2009, 15, 4528−4533. (d) Vo, G. D.; Hartwig, J. F. J. Am. Chem. Soc.
2009, 131, 11049−11061.
(3) For an example using copper catalyst, see: (a) Kim, J.; Chang, S.
Chem. Commun. 2008, 3052−3054. (b) Xia, N.; Taillefer, M. Angew.
Chem. 2009, 121, 343−345; Angew. Chem., Int. Ed. 2009, 48, 337−339.
(c) Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009,
74, 4542−4546. (d) Xu, H.; Wolf, C. Chem. Commun. 2009, 3035−
3037. (e) Wang, D.; Cai, Q.; Ding, K. Adv. Synth. Catal. 2009, 351,
1722−1726. (f) Elmkaddem, M. K.; Fischmeister, C.; Thomas, C. M.;
Renaud, J.-L. Chem. Commun. 2010, 46, 925−927. (g) Wu, Z.; Jiang,
Z.; Wu, D.; Xiang, H.; Zhou, X. Eur. J. Org. Chem. 2010, 1854−1857.
(h) Meng, F.; Zhu, X.; Li, Y.; Xie, J.; Wang, B.; Yao, J.; Wan, Y. Eur. J.
Org. Chem. 2010, 6149−6152. (i) Thakur, K. G.; Ganapathy, D.;
Sekar, G. Chem. Commun. 2011, 47, 5076−5078. (j) Huang, M.;
Wang, L.; Zhu, X.; Mao, Z.; Kuang, D.; Wan, Y. Eur. J. Org. Chem.
2012, 4897−4901. (k) Liao, B.-S.; Liu, S.-T. J. Org. Chem. 2012, 77,
6653−6656.
(16) For the generation of aryl radical species by a single electron
transfer to aryl halides, see: (a) Rossi, R. A.; Pierini, A. B.; Penenory, A.
́
̃
̃
B. Chem. Rev. 2003, 103, 71−167. (b) Shirakawa, E.; Itoh, K.;
Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537−15539.
(c) Shirakawa, E.; Hayashi, Y.; Itoh, K.; Watabe, R.; Uchiyama, N.;
Konagaya, W.; Masui, S.; Hayashi, T. Angew. Chem. 2012, 124, 222−
225; Angew. Chem., Int. Ed. 2012, 51, 218−221.
(17) For the generation of copper nitrene species from copper
reagents and azides and their application for the organic synthesis, see:
(a) Gephart, R. T, III; Warren, T. H. Organometallics 2012, 31, 7728−
7752. (b) Badiel, Y. M.; Krishnaswamy, A.; Melzer, M. M.; Warren, T.
H. J. Am. Chem. Soc. 2006, 128, 15056−15057. (c) Badiei, Y. M.;
Dinescu, A.; Dai, X.; Palomino, R. M.; Heinenmann, F. W.; Cundari,
T. R.; Warren, T. H. Angew. Chem. 2008, 120, 10109−10112; Angew.
Chem., Int. Ed. 2008, 47, 9961−9964. (d) Wiese, S.; Badiei, Y. M.;
Gephart, R. T.; Mossin, S.; Varonka, M. S.; Melzer, M. M.; Meyer, K.;
Cundari, T. R.; Warren, T. H. Angew. Chem. 2010, 122, 9034−9039;
Angew. Chem., Int. Ed. 2010, 49, 8850−8855. (e) Gephart, R. T., III;
Huang, D. L.; Aguila, M. J. B.; Schmidt, G.; Shahu, A.; Warren, T. H.
Angew. Chem. 2012, 124, 6594−6598; Angew. Chem., Int. Ed. 2012, 51,
6488−6492. (f) Aguila, M. J. B.; Badiei, Y. M.; Warren, T. H. J. Am.
Chem. Soc. 2013, 135, 9399−9408. (g) Han, H.; Park, S. B.; Kim, S. K.;
Chang, S. J. Org. Chem. 2008, 73, 2862−2870.
(18) Qu and co-workers demonstrated that copper−nitrogen bonds
of diamine-ligated copper (I) nitrene complexes, [(N···N)Cu−N−R],
show single-bonded character in some cases, e.g., when the substituent
R is methyl group, from density functional theory analysis. Meng, Q.;
Wang, F.; Qu, X.; Zhou, J.; Li, M. THEOCHEM 2007, 815, 111−118
For more studies on the structure of copper nitrene species, see ref 17a
and references cited therein.
(4) Monguchi, Y.; Maejima, T.; Mori, S.; Maegawa, T.; Sajiki, H.
Chem.Eur. J. 2010, 16, 7372−7375.
(5) Maejima, T.; Shimoda, Y.; Nozaki, K.; Mori, S.; Sawama, Y.;
Monguchi, Y.; Sajiki, H. Tetrahedron 2012, 68, 1712−1722.
(6) Aromatic azides were recently synthesized by copper-catalyzed
cross-coupling reactions between aryl halides and NaN3; see: (a) Zhu,
W.; Ma, D. Chem. Commun. 2004, 888−889. (b) Andersen, J.;
Madsen, U.; Bjorkling, F.; Liang, X. Synlett 2005, 2209−2213.
̈
(7) Cho, Y. A.; Kim, D.-S.; Ahn, H. R.; Canturk, B.; Molander, G. A.;
Ham, J. Org. Lett. 2009, 11, 4330−4333.
(8) For the pioneering observation of a copper-mediated in situ
direct formation of anilines from aryl bromides and sodium azide; see
(a) Qin, Z.; Kastrati, I.; Chandrasena, R. E. P.; Liu, H.; Yao, P.;
Petukhov, P. A.; Bolton, J. L.; Thatcher, G. R. J. J. Med. Chem. 2007,
50, 2682−2692. (b) Cosner, C. C.; Markiewicz, J. T.; Bourbon, P.;
Mariani, C. J.; Wiest, O.; Ruoji, M.; Rosenbsum, A. I.; Huang, A. Y.;
Maxfield, F. R.; Helquist, P. J. Med. Chem. 2009, 52, 6494−6498.
(9) (a) Zhao, H.; Fu, H.; Qiao, R. J. Org. Chem. 2010, 75, 3311−
3316. (b) Markiewicz, J. T.; Wiest, O.; Helquist, P. J. Org. Chem. 2010,
75, 4887−4890. (c) Messaoudi, S.; Brion, J.-D.; Alami, M. Adv. Synth.
Catal. 2010, 352, 1677−1687. (d) Goriya, Y.; Ramana, C. V.
Tetrahedron 2010, 66, 7642−7650. (e) Thakur, K. G.; Srinivas, K.
S.; Chiranjeevi, K.; Sekar, G. Green Chem. 2011, 13, 2326−2329.
(10) For a review concerning the copper-catalyzed amination of
haloarenes with azide as the amino source, see: Messaoudi, S.; Brion,
J.-D.; Alami, M. Mini Rev. Org. Chem. 2011, 8, 448−454.
(19) The recovery of Cu(0) species would explain the fact that the
amount of copper could be reduced to 0.5 equiv for the amination of
ethyl 4-bromobenzoate (1) without a significant loss of the reaction
efficiency (94%) as mentioned in our previous paper; see ref 5.
(20) Monguchi, Y.; Nozaki, K.; Maejima, T.; Shimoda, Y.; Sawama,
Y.; Kitamura, Y.; Kitade, Y.; Sajiki, H. Green. Chem. 2013, 15, 490−
495.
(21) Rohrig, U. F.; Majjigapu, S. R.; Grosdidier, A.; Bron, S.;
̈
Stroobant, V.; Pilotte, L.; Colau, D.; Vogel, P.; den Eynde, B. J. V.;
Zoete, V.; Michielin, O. J. Med. Chem. 2012, 55, 5270−5290.
(11) Tetrabutylammonium azide (TBAN3) was not quantitatively
formed, since the IR absorption of TBAN3 in DMA appeared at 1999
cm−1; see the Supporting Information.
(12) If the azide species was copper(II) azide [Cu(N3)2], several
strong absorptions woud be observed between 2050−2150 cm−1 in the
IR spectrum. On the other hand, only a single strong peak should be
observed at 2024 cm−1 together with a shoulder peak at 2070 cm−1, if
copper(I) azide (CuN3) formed; see: Dehnicke, K. Z. Anorg. Allg.
Chem. 1974, 409, 311−319.
(13) The formation of copper azides, such as CuN3 and Cu(N3)2, on
the surface of copper metal by its reaction with HN3 was reported.
Lamnevik, S. In Symposium on Chemical Problems Connected with the
Stability of Explosions; Hansson, J., Ed.; Forsvarets Forskingsanst.:
Stockholm, 1969; pp 21−33.
(14) (a) Huisgen, R.; Szeimies, G.; Moebius, L. Chem. Ber. 1967, 100,
2494−2507. (b) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry;
Padowa, A., Ed.; Wiley: New York, 1984; pp 1−176. (c) Kolb, H. C.;
Finn, M. G.; Sharpless, K. B. Angew. Chem. 2001, 113, 2056−2075;
F
dx.doi.org/10.1021/jo401474k | J. Org. Chem. XXXX, XXX, XXX−XXX