Journal of the American Chemical Society
Page 4 of 5
Supporting Information. Experimental procedures, charac-
terization data, single crystal X-ray analysis. This material is
Scheme 2. Isolation and reduction of imine intermedi-
ate
1
2
3
4
5
6
7
8
A
Ph
PhBr (3b)
L2 (12 mol %)
Ni(COD)2 (10 mol %)
N
O
O
CN
PMP
+
AUTHOR INFORMATION
Corresponding Author
*stoltz@caltech.edu
PMP
N
N
LHMDS (1 equiv)
LiBr (5 equiv)
toluene–THF
(10:1, 0.09 M)
4 °C, 48 h
1a
2b
34
77% yield
(60:40 E / Z )
B
PhCN (2a, 1.0 equiv)
PhBr (3b, 1.5 equiv)
L2 (12 mol %)
ACKNOWLEDGMENT
Ph
Ph
Ph
O
HN
N
O
O
The authors wish to thank NIH-NIGMS (R01GM080269),
Daiichi-Sankyo Co., Ltd. (M. H.), JSPS (S. H.), MEXT (S.
H.), the Caltech 3CS, and Caltech for financial support.
C.C.E. also thanks Loyola University Chicago for financial
support. Mr. Hashiru Negishi (Caltech), Mr. Larry Henling
(Caltech), and Dr. Scott Virgil (Caltech) are acknowledged
for helpful discussions, instrumentation, and experimental
assistance.
9
NaBH4
OMP
Ni(COD)2 (10 mol %)
Ph
N
OMP
N
OMP
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
N
LHMDS (1 equiv)
LiBr (5 equiv)
toluene–THF
(10:1, 0.09 M)
4 °C, 48 h
MeOH
23 °C
1b
35
36
70% yield
(67:33 dr)
(2 equiv)
Taking these results into consideration, we illustrate a
possible reaction mechanism for our C-acylation reaction
in Figure 1. We envision that the reaction proceeds by a
Ni0/NiII redox catalytic cycle. Oxidative addition of the
aryl bromide to a Ni0 complex (i.e., A) produces a NiII
arene species (B). Ligand substitution and insertion of the
benzonitrile and lactam enolate is envisioned to be ste-
reodetermining and to produce NiII-imino complex C.
Reductive elimination from C leads to the primary imine
product and regenerates Ni0 complex A. The C-acylated
product is ultimately furnished by hydrolysis of the imine
in aqueous acid.
REFERENCES
(1) For recent reviews on construction of quaternary stereocenters,
see: (a) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U. S. A.
2004, 101, 5363. (b) Trost, B. M. Synthesis 2006, 369. (c) Das, J. P.;
Marek, I. Chem. Commun. 2011, 47, 4593. (d) Quasdorf, K. W.; Over-
man, L. E. Nature 2014, 516, 181.
(2) Liu, Y.; Han, S. J.; Liu, W. B.; Stoltz, B. M. Acc. Chem. Res.
2015, 48, 740.
(3) Stoltz, B. M.; Bennett, N. B.; Duquette, D. C.; Goldberg, A. F.
G.; Liu, Y.; Loewinger, M. B.; Reeves, C. M. Alkylations of Enols and
Enolates. In Comprehensive Organic Synthesis II, 2nd ed.; Knochel, P.,
Ed.; Elsevier: Amsterdam, 2014; pp 1–55.
OLi
P
PG
R
= chiral ligand
N
*
P
(4) (a) Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532.
(b) Shaw, S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125,
13368. (c) Seitzberg, J. G.; Dissing, C.; Søtofte, I.; Norrby, P.-O.; Jo-
hannsen, M. J. Org. Chem. 2005, 70, 8332. (d) Shaw, S. A.; Aleman, P.;
Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006,
128, 925. (e) Nguyen, H. V.; Butler, D. C. D.; Richards, C. J. Org. Lett.
2006, 8, 769. (f) Busto, E.; Gotor-Fernández, V.; Gotor, V. Adv. Synth.
Catal. 2006, 348, 2626. (g) Dietz, F. R.; Gröger, H. Synlett 2008, 663.
(h) Dietz, F. R.; Gröger, H. Synthesis 2009, 4208. (i) Uraguchi, D.;
Koshimoto, K.; Miyake, S.; Ooi, T. Angew. Chem. Int. Ed. 2010, 49,
5567. (j) Zhang, Z.; Xie, F.; Jia, J.; Zhang, W. J. Am. Chem. Soc. 2010,
132, 15939. (k) Campbell, C. D.; Concellón, C.; Smith, A. D. Tetrahe-
dron Asymmetry 2011, 22, 797. (l) De, C. K.; Mittal, N.; Seidel, D. J.
Am. Chem. Soc. 2011, 133, 16802. (m) Viswambharan, B.; Okimura, T.;
Suzuki, S.; Okamoto, S. J. Org. Chem. 2011, 76, 6678. (n) Joannesse,
C.; Johnston, C. P.; Morrill, L. C.; Woods, P. A.; Kieffer, M.; Nigst, T.
A.; Mayr, H.; Lebl, T.; Philp, D.; Bragg, R. A.; Smith, A. D. Chem.
Eur. J. 2012, 18, 2398. (o) Mandai, H.; Fujiwara, T.; Noda, K.; Fujii,
K.; Mitsudo, K.; Korenaga, T.; Suga, S. Org. Lett. 2015, 17, 4436.
(5) Hills, I. D.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 3921. (b)
Ismail, M.; Nguyen, H. V.; Ilyashenko, G.; Motevalli, M.; Richards, C.
J. Tetrahedron Lett. 2009, 50, 6332. (c) Duffey, T. A.; Shaw, S. A.;
Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14. (d) Wang, M.; Zhang, Z.;
Liu, S.; Xie, F.; Zhang, W. Chem. Commun. 2014, 50, 1227.
(6)(a) Mermerian, A. H.; Fu, G. C. J. Am. Chem. Soc. 2003, 125,
4050. (b) Mermerian, A. H.; Fu, G. C. J. Am. Chem. Soc. 2005, 127,
5604.
ArCN
ligand
substitution
and
LiBr
P
Ar
P
Ph
O
insertion
N
Ni
*
Br
P
Ni
*
R
N
PG
P
B
Ph
C
reductive
elimination
oxidative
addition
Ph
Ar
P
N
O
O
O
HCl
aq
NiLn
P
*
PhBr
PG
PG
N
Ar
N
R
R
A
Figure 1. Plausible reaction mechanism of enantioselective
C-acylation.
In summary, we have developed the first intermolecular
enantioselective C-acylation of lactams by applying a chi-
ral Ni catalyst. The process is nominally a three-
component coupling reaction involving a lithium enolate,
a benzonitrile, and an aryl halide. Critical to the success
of this new reaction is the implementation of a readily
available Mandyphos-type ligand and the addition of ex-
cess lithium bromide, the combination of which afforded
high enantioselectivity and yield in the acylation. Future
work will focus on expanding the scope of the reaction,
elucidating the stereochemical course and mechanistic
details of the process, and implementation of this new
chemistry in the context of multistep synthesis.
(7) (a) Woods, P. A.; Morrill, L. C.; Lebl, T.; Slawin, A. M. Z.;
Bragg, R. A.; Smith, A. D. Org. Lett., 2010, 12 , 2660. (b) Woods, P.
A.; Morrill, L. C.; Bragg, R. A.; Smith, A. D. Chem. Eur. J. 2011, 17,
11060.
(8) (a) Birrell, J. A.; Desrosiers, J.-N.; Jacobsen, E. N. J. Am. Chem.
Soc. 2011, 133, 13872.
(9) (a) Fleming, I.; Iqbal, J.; Krebs, E.-P. Tetrahedron 1983, 39, 841.
(b) Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1983, 24, 5425. (c)
Crabtree, S. R.; Chu, W. L. A.; Mander, L. N. Synlett 1990, 169. (d) Le
Roux, C.; Mandrou, S.; Dubac, J. J. Org. Chem. 1996, 61, 3885. (e)
ASSOCIATED CONTENT
4
ACS Paragon Plus Environment