Please do not adjust margins
Green Chemistry
Page 8 of 10
ARTICLE
Journal Name
product (Scheme 3b) requires synergy between Lewis acid and
base sites.58 The initial LA activation would involve dissociation
of the carboxyl and hydroxyl group to form a dual-site bound
activated lactate species. Oxidation of the surface lactate
species takes place either via hydride abstraction by the Lewis
acid sites of titania (shown in Scheme 3b) or via a concerted
electron-coupled proton transfer.59 Further in situ spectroscopy
and computational modeling would be required to understand
this mechanism. Hydrolysis of the resulting pyruvate adsorbates
regenerates the basic OH group. This OH group activates
another LA molecule to form a surface lactate, which then
undergoes hydrogenolysis by reacting with the surface hydride
and the proton with concomitant release of water and
formation of a surface propionate. The latter can desorb after
hydrolysis of its bond with the surface OH group.
A. Gärtner and J. A. Dumesic, Science, 2008, 322, 417-421.
2. J. J. Bozell, Science, 2010, 329, 522-523.
3. P. Maki-Arvela, I. L. Simakova, T. Salmi and D. Y. Murzin, Chem.
Rev., 2014, 114, 1909-1971.
4. H. F. N. de Oliveira, C. Fares and R. Rinaldi, Chem. Sci., 2015, 6,
5215-5224.
5. J. David Rozzell, US Patent EP0135846 A2.
6. D. H. Retief, B. E. Harris, E. L. Bradley and F. R. Denys, J. Biomed.
Mater. Res., 1985, 19, 335-348.
7. H. Hayashi, S. Sugiyama, Y. Katayama, K. Sakai, M. Sugino and N.
Shigemoto, J. Mol. Catal., 1993, 83, 207-217.
8. B. U. Kim, J. H. Baik, C. I. Oh, S. D. Lee, W. L. Kim and C. S. Yoo,
US Patent US6183942 B1.
9. E. Erlenmeyer, Ber. Dtsch. Chem. Ges., 1881, 14, 320-323.
10. J. W. Howard and W. A. Fraser, Org. Synth., 1925, 4, 63-64.
11. M. Ai and K. Ohdan, Appl. Catal., A, 1997, 150, 13-20.
12. M. Ai, Appl. Catal., A, 2002, 234, 235-243.
13. T. Tsujino, S. Ohigashi, S. Sugiyama, K. Kawashiro and H.
Hayashi, J. Mol. Catal., 1992, 71, 25-35.
DOI: 10.1039/C7GC00807D
4. Conclusions
14. E. Heracleous, M. Machli, A. A. Lemonidou and I. A. Vasalos, J.
Mol. Catal. A: Chem., 2005, 232, 29-39.
We report that highly dispersed molybdate species on titania
are active catalysts for the oxidative dehydrogenation of lactic
acid to pyruvic acid. MoO3, TiO2 and physically mixed MoO3-TiO2
are selective catalysts themselves, but their activities are low
compared to the binary oxide obtained by dispersing Mo on
titania. The optimum catalyst is a 2 wt% MoO3/TiO2, in which
tetrahedral Mo species predominate over oligomeric Mo-
oxides. This catalyst provides pyruvic acid yield and selectivity
of ca. 60% and 80%, respectively. The pyruvic acid productivity
is 0.56 g g-1 h-1. At higher MoO3 content, the formation of
oligomeric Mo-oxides leads to the formation of sites that
catalyze undesired side-reactions such as decarboxylation to
acetaldehyde, which can be further oxidized to acetic acid. XPS
measurements indicate that surface redox processes of Mo are
involved in the catalytic cycle. A mechanism is proposed, in
which lactic acid adsorbs to basic sites of the titania surface and
is then dehydrogenated over the vicinal Mo=O moiety of a
tetrahedral Mo site. The catalytic cycle closes by hydrolysis of
pyruvate and desorption of water accompanied by the
reduction of the Mo site. The reduced Mo site is then re-
oxidized by molecular oxygen to close the catalytic cycle. In the
absence of oxygen, a less efficient catalytic cycle involving a
bimolecular transfer self-hydrogenation process takes place.
The reaction in this case results in the formation of propionic
acid next to pyruvic acid as the primary product.
15. K. Chen, S. Xie, E. Iglesia and A. T. Bell, J. Catal., 2000, 189, 421-
430.
16. K. Chen, S. Xie, A. T. Bell and E. Iglesia, J. Catal., 2001, 198, 232-
242.
17. H. Hayashi, N. Shigemoto, S. Sugiyama, N. Masaoka and K.
Saitoh, Catal. Lett., 1993, 19, 273-277.
18. T. Blasco and J. M. L. Nieto, Appl. Catal., A, 1997, 157, 117-142.
19. E. V. Ramos-Fernandez, N. J. Geels, N. R. Shiju and G.
Rothenberg, Green Chem., 2014, 16, 3358-3363.
20. K. Liu, A. Litke, Y. Su, B. G. van Campenhout, E. A. Pidko and E. J.
M. Hensen, Chem. Commun., 2016, 52, 11634-11637.
21. S. Lomate, T. Bonnotte, S. Paul, F. Dumeignil and B. Katryniok, J.
Mol. Catal. A: Chem., 2013, 377, 123-128.
22. H. Hayashi, N. Shigemoto, S. Sugiyama, N. Masaoka and K.
Saitoh, Catal. Lett., 19, 273-277.
23. K. Brückman, B. Grzybowska, M. Che and J. M. Tatibouët, Appl.
Catal., A, 1993, 96, 279-288.
24. C. Brookes, M. Bowker and P. Wells, Catalysts, 2016, 6, 92.
25. G. Tsilomelekis and S. Boghosian, Phys. Chem. Chem. Phys.,
2012, 14, 2216-2228.
26. K. Chen, A. T. Bell and E. Iglesia, J. Phys. Chem. B, 2000, 104,
1292-1299.
27. M. C. Abello, M. F. Gomez, M. Casella, O. A. Ferretti, M. A.
Bañares and J. L. G. Fierro, Appl. Catal., A, 2003, 251, 435-447.
28. D. Vanhove, S. R. Op, A. Fernandez and M. Blanchard, J. Catal.,
1979, 57, 253-263.
29. M. Shetty, K. Murugappan, T. Prasomsri, W. H. Green and Y.
Román-Leshkov, J. Catal., 2015, 331, 86-97.
30. G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal., B, 1998,
18, 1-36.
31. A. N. Desikan, L. Huang and S. T. Oyama, Journal of the Chemical
Society, Faraday Trans., 1992, 88, 3357-3365.
32. K. V. R. Chary, V. Vijayakumar and P. K. Rao, Langmuir, 1990, 6,
1549-1550.
33. G. Ramis, G. Busca and V. Lorenzelli, Z. Phys. Chem., 1987, 153,
189-200.
34. T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037-3058.
35. K. V. R. Chary, T. Bhaskar, K. K. Seela, K. Sri Lakshmi and K. R.
Reddy, Appl. Catal., A, 2001, 208, 291-305.
36. H. Hu, I. E. Wachs and S. R. Bare, J. Phys. Chem., 1995, 99,
10897-10910.
Acknowledgements
This work was performed in the framework of the European
Union FP7 NMP project NOVACAM ("Novel Cheap and
Abundant Materials for Catalytic Biomass Conversion", FP7-
NMP-2013-EU-Japan-604319). E.A.P. thanks the Government of
the Russian Federation (Grant 074-U01) for his personal
professorship in the framework of the ITMO Fellowship and
Professorship Program.
37. C. C. Williams, J. G. Ekerdt, J. M. Jehng, F. D. Hardcastle, A. M.
Turek and I. E. Wachs, J. Phys. Chem., 1991, 95, 8781-8791.
38. M. R. Smith, L. Zhang, S. A. Driscoll and U. S. Ozkan, Catal. Lett.,
1993, 19, 1-15.
Notes and references
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins