1
16
C. Li et al. / Inorganica Chimica Acta 398 (2013) 113–116
VII
Table 4
Re complexes can efficiently catalyze oxidation of sulfides with
Oxidation of various sulfide catalyzed by complexes 1 and 2.a
t
BuOOH. Presumably, Re peroxo species as the reactive intermedi-
ates are involved in the Ti /Re catalyst system.
IV
VII
O
O
O
S
S
S
TBHP, CH Cl2
2
Acknowledgements
R
R
+
R
RT, 1 mol% cat.
This work was supported by the National Natural Science Foun-
dation of China (Project 21001118), China Postdoctoral Science
Foundation (2011M500129), The Postdoctoral Science Foundation
of Central South University, the Fundamental Research Funds for
the Central Universities and Foundation of Hu’nan Educational
Substrate
Yield (%)b
Sulfoxide
77
Sulfone
1
2
3
S
22
25
(1)
(2)
⁄⁄
7
4
Committee (S2012R1040). Electronic supplementary information
ESI) available: Copies of the data can be obtained free of charge on
(
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK.
S
66
17
15
(1)
(2)
6
2
Appendix A. Supplementary material
S
S
72
27
19
(1)
(2)
8
0
UV data of complexes 1 and 2; Crystallographic data for 2,
which has been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication No. CCDC 903068. These
Br
Br
4
63
20
22
(1)
(2)
6
4
5
6
S
55
12
15
(1)
(2)
5
9
S
57
18
14
(1)
(2)
4
9
References
a
Reaction condition: N
catalyst, 2 mL CH Cl , room temperature; reaction time 2 h.
Determined by GC.
2
atmosphere, 0.1 mmol sulfide, 0.5 mmol TBHP, 1.0 mol%
[1] B.G. Cooper, J.W. Napoline, C.M. Thomas, Catal. Rev. 54 (2012) 1.
[2] S.K. Mandal, H.W. Roesky, Adv. Catal. 54 (2011) 1.
[3] P. Seth, L.K. Das, M.G.B. Drew, A. Ghosh, Eur. J. Inorg. Chem. (2012) 2232.
2
2
b
[
[
4] S. Sabater, J.A. Mata, E. Peris, Eur. J. Chem. 18 (2012) 6380.
5] D.S. Nesterov, V.N. Kokozay, J. Jezierska, O.V. Pavlyuk, R. Bo cˇ a, A.J.L. Pombeiro,
Inorg. Chem. 50 (2011) 4401.
t
(
2 h) were needed (entry 6). So, the BuOOH was the more efficient
[
[
[
6] F. Zhou, M. Lin, L. Li, X. Zhang, Z. Chem, Y. Li, Y. Zhao, J. Wu, G. Qian, B. Hu, W. Li,
Organometallics 30 (2011) 1283.
7] P.A. Shapley, N. Zhang, J.L. Allen, D.H. Pool, H.-C. Liang, J. Am. Chem. Soc. 122
oxidant reagent for this reaction.
With the reaction conditions established, the scope of sub-
strates of oxidation in this catalytic system was examined. Phenyl
sulfides were investigated with TBHP (5 equiv) and 1 mol% of cat-
(
2000) 1079.
8] C.V.K. Sharma, S.T. Griffin, R.D. Rogers, Chem. Commun. (1998) 215.
[9] I.S. Gonçalves, A.D. Lopes, T.R. Amarante, F.A.A. Paz, N.J.O. Silva, M. Pillinger, S.
Gago, F. Palacio, F.E. Kühn, C.C. Romão, Dalton Trans. (2009) 10199.
10] A.S. Gardberg, A.E. Sprauve, J.A. Ibers, Inorg. Chim. Acta 328 (2002) 179.
11] A.S. Gardberg, P.E. Doan, B.M. Hoffman, J.A. Ibers, Angew. Chem., Int. Ed. 40
(2001) 244.
12] A.S. Gardberg, K. Deng, D.E. Ellis, J.A. Ibers, J. Am. Chem. Soc. 124 (2002) 5476.
13] J. Luo, B. Alexander, T.R. Wagner, P.A. Maggard, Inorg. Chem. 43 (2004) 5537.
14] J.L. Manson, M.M. Conner, J.A. Schlueter, K.A. Hyzer, Polyhedron 26 (2007)
1912.
[15] D. Mikhailova, H. Ehrenberg, H. Fuess, J. Solid State Chem. 179 (2006) 2004.
16] L. Ohlhausen, D. Cockrum, J. Register, K. Roberts, G.J. Long, G.L. Powell, B.B.
Hutchinson, Inorg. Chem. 29 (1990) 4886.
17] A.D. Sutton, G.H. John, M.J. Sarsfield, J.C. Renshaw, I. May, L.R. Martin, A.J.
Selvage, D. Collison, M. Helliwell, Inorg. Chem. 43 (2004) 5480.
18] G.H. John, I. May, C.A. Sharrad, A.D. Sutton, D. Collison, M. Helliwell, M.J.
Sarsfield, Inorg. Chem. 44 (2005) 7606.
19] X.Y. Yi, Q.F. Zhang, T.C.H. Lam, E.Y.Y. Chan, I.D. Williams, W.H. Leung, Inorg.
Chem. 45 (2006) 328.
20] G.H. John, I. May, M.J. Sarsfield, H.M. Steele, D. Collison, M. Helliwell, J.D.
McKinney, Dalton Trans. (2004) 734.
21] G. Arribas, M.C. Barral, R. González-Prieto, R. Jiménez-Aparicio, J.L. Priego, M.R.
Torres, F.A. Urbanos, Inorg. Chem. 44 (2005) 5770.
[22] H. Miyasaka, R. Clérac, W. Wernsdorfer, L. Lecren, C. Bonhomme, K.-I. Sugiura,
M. Yamashita, Angew. Chem., Int. Ed. 43 (2004) 2801.
23] P.B. Chatterjee, S.M.T. Abtab, K. Bhattacharya, A. Endo, E.J. Shotton, S.J. Teat, M.
Chaudhury, Inorg. Chem. 47 (2008) 8830.
24] K. Nakamoto (Ed.), Infrared and Raman Spectra of Inorganic and Coordination
Compounds, VCH-Wiley, New York, 1997.
25] K. Nakajima, C. Sasaki, M. Kojima, T. Aoyama, S. Ohba, Y. Saito, J. Fujita, Chem.
Lett. (1987) 2189.
26] Y.N. Belokon, P. Carta, A.V. Gutnov, V. Maleev, M.A. Moskalenko, L.V. Yashkina,
N.S. Ikonnikov, N.V. Voskoboev, V.N. Khrustalev, M. North, Hel. Chim. Acta 85
2 2
alyst in CH Cl (2 mL). The results are shown in Table 4. It was
[
[
found that complexes 1 and 2 have the similar reactivity and selec-
tivity for the reactions. All of aryl methyl sulfides, para-methyl-,
bromo-phenyl methyl sulfides were efficiently converted to the
corresponding sulfoxide and sulfone with high yields (Table 4, en-
tries 1–4). The conversion of diphenyl and t-butylmethyl sulfide
proceeded considerably slower, typically completed in more than
[
[
[
[
[
[
[
[
[
2
[
h under same conditions (Table 4, entries 5–6). Interestingly,
n
(salen)TiCl2], [{(salen)TiCl}
tive catalysts for the sulfide oxidation (Table 3). So, it suggests that
the coordinated ReO group in complexes 1 and 2 should be the po-
tential active component in the catalytic procedure. Lewis acid Ti
2 4
(l-O)] and [ BuN][ReO ] are not ac-
4
IV
ꢀ
IV
VII
center coordinates ReO
include ReO fragment as in methyl trioxorhenium (MTO). It is
noted that MTO and its derivatives are typical powerful oxidation
catalyst with H as the reagent [27–29]. So, presumably Re per-
4
3
to form (Ti –O)–Re O species, which
3
2 2
O
IV
oxo species as the reactive intermediates are involved in the Ti /
Re catalyst system. None of sulfoxide products with enantiose-
VII
[
[
[
[
lectivity are observed.
4
. Conclusion
In summary, we have shown that replacement of the chloride
ligand in the complexes [(salen)TiCl
by the perrhenate group generates heteropolymetallic complexes
and 2. Structural studies indicate Lewis acid Ti center coordi-
to form (Ti –O)–Re O species, which include ReO
3 3
fragment as in methyl trioxorhenium (MTO). The resulting Ti /
(
2002) 3301.
2 2
] and [{(salen)TiCl} (l-O)]
[
[
27] S. Yamazaki, Bull. Chem. Soc. Jpn. 69 (1996) 2955.
28] D.W. Lahti, J.H. Espenson, Inorg. Chem. 39 (2000) 2164.
[29] W. Adam, C.M. Mitchell, C.R. Saha-Möller, Tetrahedron 50 (1994) 13121.
[30] G.M. Sheldrick, University of Göttingen, Germany, 1997.
IV
1
ꢀ
IV
VII
nates ReO
4
[
31] G.M. Sheldrick, Bruker AXS Inc., Madison, Wisconsin, USA, 1997.
IV