Journal of the American Chemical Society
Page 8 of 11
1
Am. Chem. Soc. 2013, 135, 4992. (e) Wang, G.-W.; McCreanor, N.
(16) For retro-cyclopropanations driven by aromatization, see: (a)
2
3
4
5
6
7
8
9
G.; Shaw, M. H.; Whittingham, W. G.; Bower, J. F. New Initiation
Modes for Directed Carbonylative C–C Bond Activation: Rhodium-
Catalyzed (3+1+2) Cycloadditions of Aminomethylcyclopropanes. J.
Am. Chem. Soc. 2016, 138, 13501.
Solorio-Alvarado, C. R.; Echavarren, A. M. Gold-Catalyzed
Annulation/Fragmentation: Formation of Free Gold Carbenes by
Retro-Cyclopropanation. J. Am. Chem. Soc. 2010, 132, 11881. (b)
Wang, Y.; McGonigal, P. R.; Herlé, B.; Besora, M.; Echavarren, A.
M. Gold(I) Carbenes by Retro-Buchner Reaction: Generation and
Fate. J. Am. Chem. Soc. 2014, 136, 801.
(17) (a) Walczak, M.; Krainz, T.; Wipf, P. Ring-Strain-Enabled
Reaction Discovery: New Heterocycles from Bicyclo[1.1.0]butanes.
Acc. Chem. Res. 2015, 48, 1149. (b) Walczak, M.; Wipf, P.
Rhodium(I)-Catalyzed Cycloisomerizations of Bicyclobutanes. J. Am.
Chem. Soc. 2008, 130, 6924.
(18) (a) Noyori, R.; Suzuki, T.; Kumagai, Y.; Takaya, H.
Nickel(0)-Catalyzed Reaction of Bicyclo[1.1.0]butanes with Olefins.
J. Am. Chem. Soc. 1971, 93, 5894. (b) Noyori, R. On the Nature of
Carbenoids Generated from Bicyclo[1.1.0]butanes and Transition
Metal Complexes. Tetrahedron Lett. 1973, 14, 1691. (c) Takaya, H.;
Suzuki, T.; Kumagai, Y.; Hosoya, M.; Kawauchi, H.; Noyori, R.
Nickel(0)-Catalyzed Reactions of Bicyclo[1.1.0]butanes. Geminal
Two-Bond Cleavage Reaction and the Stereospecific Olefin Trapping
of the Carbenoid Intermediate. J. Org. Chem. 1981, 46, 2854.
(19) (a) Wiberg, K. B.; Walker, F. H. [1.1.1]Propellane. J. Am.
Chem. Soc. 1982, 104, 5239. (b) Semmler, K.; Szeimies, G.; Belzner,
J. Tetracyclo[5.1.0.01,6.02,7]octane, a [1.1.1]Propellane Derivative, and
a New Route to the Parent Hydrocarbon. J. Am. Chem. Soc. 1985,
107, 6410.
(20) The calculated strain energy is dependent on the level of
theory used. See: (a) Wiberg, K. B. Strain Energies of Small Ring
Propellanes. J. Am. Chem. Soc. 1983, 105, 1227. (b) Khoury, P. R.;
Goddard, J. D.; Tam, W.; Ring Strain Energies: Substituted Rings,
Norbornanes, Norbornenes and Norbornadienes. Tetrahedron 2004,
60, 8112. (c) Polo, V.; Andres, J.; Silvi, B. New Insights on the
Bridge Carbon–Carbon Bond in Propellanes: A Theoretical Study
Based on the Analysis of the Electron Localization Function. J.
Comput. Chem. 2007, 28, 857. (d) Ioffe, A. I.; Svyatkin, V. A.;
Nefedov, O. M. Molecular-Mechanical Analysis of the Structure of
Strained Organic Molecules. 6. [m.n.k]-Propellanes. Bull. Acad. Sci.
USSR Div. Chem. Sci. 1988, 37, 1827.
(21) (a) Kaszynski, P.; Friedli, A. C.; Michl, J. Toward a
Molecular-Size Tinkertoy Construction Set. Preparation of Terminally
Functionalized [n]Staffanes from [1.1.1]Propellane. J. Am. Chem.
Soc. 1992, 114, 601. (b) Kaszynski, P.; McMurdie, N. D.; Michl, J.
Synthesis of Doubly Bridgehead Substituted Bicyclo[1.1.1]pentanes.
Radical Transformations of Bridgehead Halides and Carboxylic
Acids. J. Org. Chem. 1991, 56, 307. (c) Messner, M.; Kozhushkov, S.
I.; de Meijere, A. Nickel‐ and Palladium‐Catalyzed Cross‐Coupling
Reactions at the Bridgehead of Bicyclo[1.1.1]pentane Derivatives ‐ A
Convenient Access to Liquid Crystalline Compounds Containing
Bicyclo[1.1.1]pentane Moieties. Eur. J. Org. Chem. 2000, 1137. (d)
Kanazawa, J.; Maeda, K.; Uchiyama, M. Radical Multicomponent
Carboamination of [1.1.1]Propellane. J. Am. Chem. Soc. 2017, 139,
17791. (e) Shelp, R. A.; Walsh, P. J. Synthesis of BCP Benzylamines
From 2‐Azaallyl Anions and [1.1.1]Propellane. Angew. Chem., Int.
Ed. 2018, 57, 15857. (f) Caputo, D. F. G.; Arroniz, C.; Dürr, A. B.;
Mousseau, J. J.; Stepan, A. F.; Mansfield, S. J.; Anderson, E. A.
Synthesis and Applications of Highly Functionalized 1-Halo-3-
substituted Bicyclo[1.1.1]pentanes. Chem. Sci. 2018, 9, 5295. (g)
Nugent, J.; Arroniz, C.; Shire, B. R.; Sterling, A. J.; Pickford, H. D.;
Wong, M. L. J.; Mansfield, S. J.; Caputo, D. F. J.; Owen, B.;
Mousseau, J. J.; Duarte, F.; Anderson, E. A. A General Route to
Bicyclo[1.1.1]pentanes through Photoredox Catalysis. ACS Catal.
2019, 9, 9568. (h) Bär, R. M.; Kirschner, Nieger, S. M.; Bräse, S.
Alkyl and Aryl Thiol Addition to [1.1.1]Propellane: Scope and
Limitations of a Fast Conjugation Reaction. Chem. Eur. J. 2018, 24,
1373.
(11) (a) Liu, L.; Montgomery, J. Dimerization of Cyclopropyl
Ketones and Crossed Reactions of Cyclopropyl Ketones with Enones
as an Entry to Five-Membered Rings. J. Am. Chem. Soc. 2006, 128,
5348. (b) Tamaki, T.; Ohashi, M.; Ogoshi, S. [3+2] Cycloaddition
Reaction of Cyclopropyl Ketones with Alkynes Catalyzed by
Nickel/Dimethylaluminum Chloride. Angew. Chem., Int. Ed. 2011,
50, 12067. (c) Ogoshi, S.; Nagata, M.; Kurosawa, H. Formation of
Nickeladihydropyran by Oxidative Addition of Cyclopropyl Ketone.
Key Intermediate in Nickel-Catalyzed Cycloaddition. J. Am. Chem.
Soc. 2006, 128, 5350. (d) Jiao, L.; Lin, M.; Yu, Z.-X. Density
Functional Theory Study of the Mechanisms and Stereochemistry of
the Rh(I)-Catalyzed Intramolecular [3+2] Cycloadditions of 1-Ene-
and 1-Yne-Vinylcyclopropanes. J. Am. Chem. Soc. 2011, 133, 447.
(12) (a) Lautens, M.; Ren, Y. Transition Metal Catalyzed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Stereospecific Intramolecular [3
+
2] Cycloadditions of
Methylenecyclopropanes with Alkynes. J. Am. Chem. Soc. 1996, 118,
9597. (b) Saito, S.; Masuda, M.; Komagawa, S. Nickel-Catalyzed
Intermolecular [3
+
2
+
2] Cocyclization of Ethyl
Cyclopropylideneacetate and Alkynes. J. Am. Chem. Soc. 2004, 126,
10540. (c) Saya, L.; Bhargava, G.; Navarro, M. A.; Gulías, M.;
Lꢁpez, F.; Fernꢂndez, I.; Castedo, L.; Mascareꢃas, J. L. Nickel‐
Catalyzed
[3+2+2]
Cycloadditions
between
Alkynylidenecyclopropanes and Activated Alkenes. Angew. Chem.,
Int. Ed. 2010, 49, 9886. (d) Evans, P. A.; Inglesby, P. A.
Diastereoselective
Rhodium-Catalyzed
Ene-Cycloisomerization
Reactions of Alkenylidenecyclopropanes: Total Synthesis of (−)-α-
Kainic Acid. J. Am. Chem. Soc. 2012, 134, 3635. (e) Terao, J.;
Tomita, M.; Singh, S. P.; Kambe, N. Nickel‐Catalyzed Regioselective
Carbomagnesation of Methylenecyclopropanes through
a Site‐
Selective Carbon–Carbon Bond Cleavage. Angew. Chem., Int. Ed.
2010, 49, 144. (f) Simaan, S.; Marek, I. Hydroformylation Reaction of
Alkylidenecyclopropane Derivatives:
A New Pathway for the
Formation of Acyclic Aldehydes Containing Quaternary Stereogenic
Carbons. J. Am. Chem. Soc. 2010, 132, 4066.
(13) (a) Juliꢂ-Hernꢂndez, F.; Ziadi, A.; Nishimura, A.; Martin, R.
Nickel‐Catalyzed Chemo‐, Regio‐ and Diastereoselective Bond
Formation through Proximal C–C Cleavage of Benzocyclobutenones.
Angew. Chem., Int. Ed. 2015, 54, 9537. (b) Thakur, A.; Facer, M. E.;
Louie, J. Nickel‐Catalyzed Cycloaddition of 1,3‐Dienes with 3‐
Azetidinones and 3‐Oxetanones. Angew. Chem., Int. Ed. 2013, 52,
12161. (c) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki, K.;
Ishida, N.; Murakami, M. Oxidative Addition of a Strained C–C Bond
onto Electron-Rich Rhodium(I) at Room Temperature. J. Am. Chem.
Soc. 2013, 135, 7142. (d) Souillart, L.; Parker, E.; Cramer, N. Highly
Enantioselective Rhodium(I)‐Catalyzed Activation of Enantiotopic
Cyclobutanone C–C Bonds. Angew. Chem., Int. Ed. 2014, 53, 3001.
(e) Ko, H. M.; Dong, G. Cooperative Activation of Cyclobutanones
and Olefins Leads to Bridged Ring Systems by a Catalytic [4 + 2]
Coupling. Nat. Chem. 2014, 6, 739.
(14) (a) Asako, S.; Kobashi, T.; Takai, K. Use of Cyclopropane as
C1 Synthetic Unit by Directed Retro-Cyclopropanation with Ethylene
Release J. Am. Chem. Soc. 2018, 140, 15425. (b) Gassman, P. G.;
Johnson, T. H. Retrocarbene Additions. Dissection of Alkyl-
Substituted Cyclopropanes Under Metathesis Conditions. J. Am.
Chem. Soc. 1976, 98, 6057. (c) Gassman, P. G.; Johnson, T. H.
Cyclopropane–Olefin Cross Metathesis. J. Am. Chem. Soc. 1976, 98,
6058. (d) Kawamura, T.; Kawaguchi, Y.; Sugikubo, K.; Inagaki, F.;
Mukai, C. Rhodium(I)-Catalyzed Cycloisomerization of Allene–
Allenylcyclopropanes. Eur. J. Org. Chem. 2015, 2015, 719.
(15) Yoshizaki, S.; Shibata, Y.; Tanaka, K. Fulvene Synthesis by
Rhodium(I)-Catalyzed [2+2+1] Cycloaddition: Synthesis and
Catalytic Activity of Tunable Cyclopentadienyl Rhodium(III)
Complexes with Pendant Amides. Angew. Chem., Int. Ed. 2017, 56,
3590.
(22) (a) Gianatassio, R.; Lopchuk, J. M.; Wang, J.; Pan, C.-M.;
Malins, L. R.; Prieto, L.; Brandt, T. A.; Collins, M. R.; Gallego, G.
M.; Sach, N. W.; Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. Strain-
Release Amination. Science 2016, 351, 241. (b) Makarov, I. S.;
ACS Paragon Plus Environment
Public