4912
M. Shultz et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4909–4912
Table 5
In summary, a novel class of hydroxamate based HDAC inhibi-
In vitro cardiac safety index of select compounds
tors with the general structure 10 has been identified. Synthetic
routes that enable late stage diversification, including a previously
unreported method of efficient phthalamide carbonyl reduction in
the presence of an aryl bromide functionality have been developed.
A systematic approach to improve solubility, potency and meta-
bolic stability resulted in several compounds with potency supe-
rior to several HDAC inhibitors in late stage clinical trials.
Compound 17e was identified as a candidate for lead optimization
with promising drug-like properties. This compound possesses low
nanomolar in vitro anti-proliferative activity, good solubility and
an acceptable CYP3A4 profile. The low micromolar activity in the
hERG patch clamp assay would have to be addressed by either
improving HDAC potency, reducing hERG affinity or a combination
thereof. Efforts toward this end will be reported in due course.
Compound
HDAC1 IC50
M)
HCT116a IC50
M)
hERG patch clampb
IC50 (lM)
iCSI
(l
(
l
SAHA (1)
Belinostat
(2)
SNDX-275
(3)
MGCD0103 0.152
(4)
LAQ824 (5) 0.015
0.077
0.015
0.81
0.16
>30
>30
>37
>187
0.485
0.67
0.31
>30
>30
>44
>97
0.019
0.83
0.19
0.90
0.22
0.53
0.042
2.1
10.3
>30
>30
22.2
>30
3.9
542
>36
>158
25
>136
7.4
15h
15i
0.13
0.020
17b
17c
17d
17e
17f
4.8
>30
114
>15
References and notes
a
Anti-proliferative activity in human colon cancer HCT116 cell line.
Activity in automated patch clamp assay for hERG activity.
b
1. Lehrmann, H.; Pritchard, L. L.; Harel-Bellan, A. Adv. Cancer Res. 2002, 86, 41.
2. Mai, A.; Massa, S.; Rotili, D.; Cerbara, I.; Valente, S.; Pezzi, R.; Simeoni, S.; Ragno,
R. Med. Res. Rev. 2005, 25, 261.
3. Gimsing, P.; Hansen, M.; Knudsen, L. M.; Knoblauch, P.; Christensen, I. J.; Ooi, C.
E.; Buhl-Jensen, P. Eur. J. Haematol. 2008, 81, 170.
Table 6
4. Qian, X.; LaRochelle, W. J.; Ara, G.; Wu, F.; Petersen, K. D.; Thougaard, A.;
Sehested, M.; Lichenstein, H. S.; Jeffers, M. Mol. Cancer Ther. 2006, 5, 2086.
5. Gore, L.; Rothenberg, M. L.; O’Bryant, C. L.; Schultz, M. K.; Sandler, A. B.; Coffin,
D.; McCoy, C.; Schott, A.; Scholz, C.; Eckhardt, S. G. Clin. Cancer Res. 2008, 14,
4517.
Solubility and in vitro microsomal stability profile
Compound
Rat t1/2
(min)
Human t1/2
(min)
Thermodynamic
solubility at pH 6.8
M)
(
l
6. Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N.; Saito, A.; Mariko, Y.; Yamashita,
T.; Nakanishi, O. J. Med. Chem. 1999, 42, 3001.
SAHA (1)
Belinostat (2)
SNDX-275 (3) 405
MGCD0103
(4)
LAQ824 (5)
15a
15i
16f
16j
16k
16o
17a
17c
17d
17e
17f
114
18
405
405
405
37.8
19
7. Zhou, N.; Moradei, O.; Raeppel, S.; Leit, S.; Frechette, S.; Gaudette, F.; Paquin, I.;
Bernstein, N.; Bouchain, G.; Vaisburg, A.; Jin, Z.; Gillespie, J.; Wang, J.; Fournel,
M.; Yan, P. T.; Trachy-Bourget, M. C.; Kalita, A.; Lu, A.; Rahil, J.; MacLeod, A. R.;
Li, Z.; Besterman, J. M.; Delorme, D. J. Med. Chem. 2008, 51, 4072.
8. Garcia-Manero, G.; Assouline, S.; Cortes, J.; Estrov, Z.; Kantarjian, H.; Yang, H.;
Newsome, W. M.; Miller, W. H., Jr.; Rousseau, C.; Kalita, A.; Bonfils, C.; Dubay,
M.; Patterson, T. A.; Li, Z.; Besterman, J. M.; Reid, G.; Laille, E.; Martell, R. E.;
Minden, M. Blood 2008, 112, 981.
9. Fournel, M.; Bonfils, C.; Hou, Y.; Yan, P. T.; Trachy-Bourget, M. C.; Kalita, A.; Liu,
J.; Lu, A. H.; Zhou, N. Z.; Robert, M. F.; Gillespie, J.; Wang, J. J.; Ste-Croix, H.;
Rahil, J.; Lefebvre, S.; Moradei, O.; Delorme, D.; MacLeod, A. R.; Besterman, J. M.;
Li, Z. Mol. Cancer Ther. 2008, 7, 759.
734
401
33
31.3
2.3
14
15
nd
4.1
7
8.5
29
5
12
97
99
20
34
20
20
<5
517
490
765
263
490
131
173
nd
11
15
19
10. Kell, J. Curr. Opin. Investig. Drugs 2007, 8, 485.
50
11. Remiszewski, S. W.; Sambucetti, L. C.; Bair, K. W.; Bontempo, J.; Cesarz, D.;
Chandramouli, N.; Chen, R.; Cheung, M.; Cornell-Kennon, S.; Dean, K.;
Diamantidis, G.; France, D.; Green, M. A.; Howell, K. L.; Kashi, R.; Kwon, P.;
Lassota, P.; Martin, M. S.; Mou, Y.; Perez, L. B.; Sharma, S.; Smith, T.; Sorensen,
E.; Taplin, F.; Trogani, N.; Versace, R.; Walker, H.; Weltchek-Engler, S.; Wood,
A.; Wu, A.; Atadja, P. J. Med. Chem. 2003, 46, 4609.
nd
112
30
9
2
6
17
12. Shultz, M.; Cao, X.; Chen, C.; Cho, Y. S.; Davis, N.; Eckman, J.; Fan, J.; Fekete, A.;
Firestone, B.; Flynn, J.; Green, J.; Growney, J.; Holmqvist, M.; Hsu, M.; Jansson,
D.; Jiang, L.; Kwon, P.; Liu, G.; Lombardo, F.; Lu, Q.; Majumdar, D.; Meta, C.;
Perez, L.; Pu, M.; Ramsey, T.; Remiszewski, S.; Skolnik, S.; Traebert, M.; Urban,
L.; Uttamsingh, V.; Wang, P.; Whitebread, S.; Whitebread, L.; Yan-Neale, Y.;
13. Whitehead, L.; Dobler, M. R.; Radetich, B.; Zhu, Y.; Atadja, P. W.; Claiborne, T.;
Grob, J. E.; McRiner, A.; Pancost, M. R.; Patnaik, A.; Shao, W.; Shultz, M.;
Tichkule, R.; Tommasi, R. A.; Vash, B.; Wang, P.; Stams, T. Bioorg. Med. Chem., in
potent HDAC inhibitor identified in this series and has an iCSI of
114. The hERG SAR in this series appears to track with HDAC activ-
ity and additional efforts to improve this safety margin would be
warranted during a lead optimization campaign.
hERG IC50
hERG IC50
iCSI ¼
¼
cellular IC50 HCT 116 IC50
14. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D.
J. Med. Chem. 2002, 45, 2615.
15. Cho, Y. S.; Whitehead, L.; Li, J.; Chen, C. H.; Jiang, L.; Vogtle, M.; Francotte, E.;
Richert, P.; Wagner, T.; Traebert, M.; Lu, Q.; Cao, X.; Dumotier, B.; Fejzo, J.;
Rajan, S.; Wang, P.; Yan-Neale, Y.; Shao, W.; Atadja, P.; Shultz, M. J. Med. Chem.
2010, 53, 2952.
While the hydroxamate class of clinical HDAC inhibitors
appears to be more potent and less susceptible to CYP450 inhibi-
tion than the benzamide class, hydroxamates generally have poor
PK properties in rodent species.20 This creates an additional chal-
lenge in the development of anti-cancer agents, which generally
rely on rodent based xenograft models. The microsomal stability
and solubility of select compounds were evaluated and are
reported below (Table 6). All the analogs in the isoindoline series
have poor microsomal stability in rat liver microsomes, whereas
several analogs show enhanced stability in human liver micro-
somes. Compounds 17d and 17e have a reasonable combination
of potency, solubility and human microsomal to justify further
investigation.
16. Manuscript in preparation.
17. Egorin, M. J. Cancer Chemother. Pharmacol. 1998, 42, S22.
18. Schneider, B. J.; Kalemkerian, G. P.; Bradley, D.; Smith, D. C.; Egorin, M. J.;
Daignault, S.; Dunn, R.; Hussain, M. Invest. New Drugs 2010. doi:10.1007/
19. Williams, J. A.; Bauman, J.; Cai, H.; Conlon, K.; Hansel, S.; Hurst, S.; Sadagopan,
N.; Tugnait, M.; Zhang, L.; Sahi, J. Curr. Opin. Drug Discov. Devel. 2005, 8, 78.
20. Flipo, M.; Charton, J.; Hocine, A.; Dassonneville, S.; Deprez, B.; Deprez-Poulain,
R. J. Med. Chem. 2009, 52, 6790.