Journal of the American Chemical Society
Page 4 of 6
silicon electrophile (Scheme 4). Brookhart’s acid 2 is sufficiently
Experimental procedures, spectral data for all new compounds,
1
2
3
4
5
6
7
8
strong to protonate the hydrosilane to form a pentacoordinate
siliconium ion (1 → 9).3,19 That transient intermediate will release
dihydrogen18 to afford the donor-stabilized silylium ion
and crystallographic data. This material is available free of charge
[R3Si(donor)]+ [BArF ]– (10
→ 3). Et2O introduced with
AUTHOR INFORMATION
4
[H(OEt2)2]+[BArF ]– (2) is likely to act as the stabilizing donor (cf.
4
Equation 3 and Figure 1) but the toluene solvent12 will assume
this role18b if ether cleavage occurs in the course of the reaction.
The cationic silicon electrophile 3 is then attacked by the nucleo-
philic indole (4a → 11a). The resulting Wheland complex is a
Corresponding Author
Notes
9
strong Brønsted acid with the weakly coordinating [BArF ]–
The authors declare no competing financial interest.
4
counteranion, and direct protonation of another hydrosilane mol-
ecule closes the catalytic cycle (1 → 10) concomitant with for-
mation of the C3-silylated indole (11a → 5a).20,21
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
Q.-A.C. gratefully acknowledges the Alexander von Humboldt
Foundation for a postdoctoral fellowship (2015–2017). M.O. is
indebted to the Einstein Foundation (Berlin) for an endowed
professorship. We thank Dr. Elisabeth Irran (TU Berlin) for the
X-ray analysis.
Scheme 4. Proposed Catalytic Cycle of the Brønsted Ac-
id-Promoted Electrophilic Indole Silylation
REFERENCES
(1) Frick, U.; Simchen, G. Synthesis 1984, 929–930.
(2) (a) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett.
1981, 22, 3455–3458 (iPr3SiOTf). (b) Aizpurua, J. M.; Palomo, C.
Tetrahedron Lett. 1985, 26, 6113–6114 (tBuMe2SiOTf).
(3) Conversely, treatment of R3SiD (R = Me, Et, and iPr) with HI in the
1
presence of AlI3 leads to H/2H exchange: Olah, G. A.; Heiliger, L.;
Aniszfeld, R.; Prakash, G. K. S. New J. Chem. 1990, 14, 877–881.
(4) Recent reviews of silylium ions: (a) Müller, T. In Structure and
Bonding; Scheschkewitz, D., Ed.; Springer: Berlin, 2014; Vol. 155,
pp 107–162. (b) Müller, T. In Science of Synthesis: Knowledge
Updates 2013/3; Oestreich, M., Ed.; Thieme: Stuttgart, 2013; pp 1–
42. (c) Klare, H. F. T.; Oestreich, M. Dalton Trans. 2010, 39, 9176–
9184.
(5) Known strategies to generate silylium ions: (a) Corey, J. Y. J. Am.
Chem. Soc. 1975, 97, 3237–3238 (silicon-to-carbon hydride transfer).
(b) Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhlmann, B. J.
Am. Chem. Soc. 1999, 121, 5001–5008 (allyl-leaving-group
approach). (c) MacLachlan, M. J.; Bourke, S. C.; Lough, A. J.;
Manners, I. J. Am. Chem. Soc. 2000, 122, 2126–2127 (ring-opening
protonolysis). (d) Schäfer, A.; Reißmann, M.; Schäfer, A.; Saak, W.;
Haase, D.; Müller, T. Angew. Chem., Int. Ed. 2011, 50, 12636–
12638 (substituent exchange). (e) Schäfer, A.; Reißmann, M.;
Schäfer, A.; Schmidtmann, M.; Müller, T. Chem. - Eur. J. 2014, 20,
9381–9386 (silylene protonation). (f) Simonneau, A.; Biberger, T.;
Formation of the indoline byproduct 6a is rationalized by com-
peting silylium-ion catalysis. Proton transfer from intermediate
11a to the indole substrate 4a used in excess not only liberates the
C3-silylated indole 5a but also arrives at another Wheland com-
plex 12a. This step was NMR spectroscopically corroborated by
the reaction of 4a with an independently prepared sample of 11a.
Iminium ion 12a then accepts a hydride from hydrosilane 1 to
yield indoline 6a as well as donor-stabilized silylium ion 3; quan-
titative deuterium incorportation at C2 of 6a was seen when using
Me2PhSiD (1a-d1). This reduction pathway will not occur with the
aniline substrates (not shown).
Oestreich,
M.
Organometallics
2015,
34,
3927–3929
(cyclohexadienyl-leaving-group approach).
(6) Recent reviews of catalytic C–H silylation: (a) Cheng, C.; Hartwig, J.
F. Chem. Rev. 2015, 115, 8946–8975. (b) Yang, Y.; Wang, C. Sci.
China Chem. 2015, 58, 1266–1279. (c) Xu, Z.; Huang, W.-S.; Zhang,
J.; Xu, L.-W. Synthesis 2015, 47, 3645–3668. (d) Sharma, R.; Kumar,
R.; Kumar, I.; Singh, B.; Sharma, U. Synthesis 2015, 47, 2347–2366.
(7) Intermolecular Friedel–Crafts-type C–H silylations: (a) Furukawa, S.;
Kobayashi, J.; Kawashima, T. Dalton Trans. 2010, 39, 9329–9336.
(b) Klare, H. F. T.; Oestreich, M.; Ito, J.-i.; Nishiyama, H.; Ohki, Y.;
Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312–3315. (c) Curless, L.
D.; Clark, E. R.; Dunsford, J. J.; Ingleson, M. J. Chem. Commun.
2014, 50, 5270–5272. (d) Yin, Q.; Klare, H. F. T.; Oestreich, M.
Angew. Chem., Int. Ed. 2016, 55, 3204–3207. (e) Ma, Y.; Wang, B.;
Zhang, L.; Hou, Z. J. Am. Chem. Soc. 2016, 138, 3663–3666.
(8) Intramolecular Friedel–Crafts-type C–H silylations: (a) Furukawa, S.;
Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc. 2009, 131, 14192–
14193. (b) Ref 7a. (c) Curless, L. D.; Ingleson, M. J.
Organometallics 2014, 33, 7241–7246. (d) Omann, L.; Oestreich, M.
Angew. Chem., Int. Ed. 2015, 54, 10276–10279.
To recap, we disclosed here a counterintuitive C–H silylation of
electron-rich (hetero)arenes passing through an SEAr mechanism.
The transformation is initiated by Brønsted acid-mediated genera-
tion of a highly electrophilic silicon cation from hydrosilanes.
Protonation of the hydrosilane leads to loss of dihydrogen and
release of the stabilized silylium ions. The Wheland intermediate
then largely maintains the catalytic cycle as the proton source. No
protodesilylation is observed when the amount of acid is well
balanced. This protocol is a practical and straightforward way for
the installation of silicon groups on arenes, thereby complement-
ing existing transition-metal and Lewis-acid catalyses.6
(9) (a) Bassindale, A. R.; Stout, T. J. Organomet. Chem. 1984, 271, C1–
C3. (b) Uhlig, W.; Tzschach, A. J. Organomet. Chem. 1989, 378,
C1–C5.
(10) Brookhart, M.; Grant, B.; Volpe, Jr., A. F. Organometallics 1992, 11,
3920–3922.
ASSOCIATED CONTENT
Supporting Information
(11) For studies on silyloxonium ions, see: (a) Kira, M.; Hino, T.; Sakurai,
H. J. Am. Chem. Soc. 1992, 114, 6697–6700. (b) Olah, G. A.; Li,
ACS Paragon Plus Environment