3 Solvent-free asymmetric catalytic reactions, see: (a) M. Tokunaga,
J. F. Larrow, F. Kakiuchi and E. N. Jacobsen, Science, 1997, 277, 936;
(b) A. G. Dossetter, T. F. Jamison and E. N. Jacobsen, Angew. Chem.,
Int. Ed., 1999, 38, 2398; (c) J. Long, J. Hu, X. Shen, B. Ji and K. Ding,
J. Am. Chem. Soc., 2002, 124, 10; (d) F. Shibahara, K. Nozaki and
T. Hiyama, J. Am. Chem. Soc., 2003, 125, 8555; (e) S.-J. Jeon, H. Li and
P. J. Walsh, J. Am. Chem. Soc., 2005, 127, 16416; reviews, see: (f)
J. O. Metzger, Angew. Chem., Int. Ed., 1998, 21, 2975; (g) K. Tanaka,
Solvent-free Organic Synthesis, Wiley-VCH, Weinheim, 2003.
4 (a) A. Berkssel and H. Groger, Asymmetric Organocatalysis, Wiley-
VCH, Weinheim, 2005; (b) P. I. Dalko and L. Moisan, Angew. Chem.,
Int. Ed., 2004, 43, 5138; (c) Y. Hayashi, J. Synth. Org. Chem. Jpn., 2005,
63, 464.
Table 3 Enantioselective direct, proline-mediated aldol reactiona
5 Modern Aldol Reactions ed. R. Mahrwald, Wiley-VCH, Weinheim,
2004, vol. 1 and 2.
6 For representative papers, see: (a) Z. G. Hajos and D. R. Parrish, J. Org.
Chem., 1974, 39, 1615; (b) U. Eder, G. Sauer and R. Wiechert, Angew.
Chem., Int. Ed. Engl., 1971, 10, 496; (c) B. List, R. Lerner and
C. F. Barbas, III, J. Am. Chem. Soc., 2000, 122, 2395; (d) A. B. Northup
and D. W. C. MacMillan, J. Am. Chem. Soc., 2002, 124, 6798; review,
see: (e) B. List, Modern Aldol Reactions, Wiley-VCH, Weinheim, 2004,
pp. 161–200.
7 Reviews as for the reactions in water, see: (a) Organic Synthesis
in Water, ed. P. A. Grieco, Blackie A & P, London, 1998; (b)
U. M. Lindstrom, Chem. Rev., 2002, 102, 2751; (c) C.-J. Li, Chem. Rev.,
2005, 105, 3095.
8 Organocatalysis-mediated asymmetric aldol reaction in aqueous solvent,
see: (a) T. J. Dickerson and K. D. Janda, J. Am. Chem. Soc., 2002, 124,
3220; (b) H. Torii, M. Nakadai, K. Ishihara, S. Saito and H. Yamamoto,
Angew. Chem., Int. Ed., 2004, 43, 1983; (c) A. I. Nyberg, A. Usano and
P. M. Pihko, Synlett, 2004, 1891; (d) Z. Tang, Z.-H. Yang, L.-F. Cun,
L.-Z. Gong, A.-Q. Mi and Y.-Z. Jiang, Org. Lett., 2004, 6, 2285; (e)
J. Casas, H. Sunden and A. Cordova, Tetrahedron Lett., 2004, 45, 6117;
(f) D. E. Ward and V. Jheengut, Tetrahedron Lett., 2004, 45, 8347; (g)
I. Ibrahem and A. Cordova, Tetrahedron Lett., 2005, 46, 3363; (h)
S. S. Chimni, D. Mahajan and V. V. S. Babu, Tetrahedron Lett., 2005,
46, 5617; (i) M. Amedjkouh, Tetrahedron: Asymmetry, 2005, 16, 1411;
(j) A. Cordova, W. Zou, I. Ibrahem, E. Reyes, M. Engqvist and
W.-W. Liao, Chem. Commun., 2005, 3586; (k) P. Dziedzic, W. Zou,
J. Hafren and A. Cordova, Org. Biomol. Chem., 2006, 4, 38; (l)
P. M. Pihko, K. M. Laurikainen, A. Usano, A. I. Nyberg and
J. A. Kaavi, Tetrahedron, 2006, 62, 317.
a
Yields are for isolated compounds, and diastereomer ratios were
determined by 1H NMR. Ee refers to that of the anti-isomer, and
were determined by chiral HPLC (see ESI). Condition A: acceptor
aldehyde : donor aldehyde : proline = 1 : 5 : 0.1. The reaction was
performed under neat conditions at 4 uC. The aldol product was
reduced with NaBH4 and isolated as a diol. Conditions B: acceptor
aldehyde : carbonyl compound : proline = 1 : 5 : 0.3. Commercially
available aqueous aldehyde was employed as received (3.8 equiv. of
water), and the reaction was performed at room temperature.
Conditions C: aldehyde : ketone : proline = 1 : 3 : 0.3. The reaction
was performed in the presence of 3 equiv. amount of water at room
temperature. bThe aldol product was reduced with NaBH4 and
isolated as a diol.
9 Y. Hayashi, T. Sumiya, J. Takahashi, H. Gotoh, T. Urushima and
M. Shoji, Angew. Chem., Int. Ed., 2006, 45, 958.
10 Y. Hayashi, S. Aratake, T. Okano, J. Takahashi, T. Sumiya and
M. Shoji, Angew. Chem., Int. Ed., 2006, 45, 5527.
11 N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka and
C. F. Barbas, III, J. Am. Chem. Soc., 2006, 128, 734.
12 Z. Jiang, Z. Liang, X. Wu and Y. Lu, Chem. Commun., 2006,
2801.
13 A. Cordova, W. Notz and C. F. Barbas, III, Chem. Commun., 2002,
3024.
14 S. Aratake, T. Itoh, T. Okano, T. Usui, M. Shoji and Y. Hayashi,
manuscript in preparation.
15 (a) D. Enders and C. Grondal, Angew. Chem., Int. Ed., 2005, 44, 1210;
(b) J. T. Suri, D. B. Ramachary and C. F. Barbas, III, Org. Lett., 2005,
7, 1383; (c) A. Cordova, I. Ibrahem, J. Casas, H. Sunden, M. Engqvist
and E. Reyes, Chem. Eur. J., 2005, 11, 4772; (d) D. Enders, J. Palecek
and C. Grondal, Chem. Commun., 2006, 655; (e) C. Grondal and
D. Enders, Tetrahedron, 2006, 62, 329; (f) I. Ibrahem and A. Cordova,
Tetrahedron Lett., 2005, 46, 3363; (g) review of the proline-catalyzed
carbohydrate synthesis, see: D. Enders, M. Voith and A. Lenzen,
Angew. Chem., Int. Ed., 2005, 44, 1304.
In summary, we have found practical enantioselective aldehyde–
aldehyde and aldehyde–ketone aldol reactions catalyzed by the
inexpensive and safe catalyst proline under dry and wet conditions.
There are several noteworthy synthetic advantages to the present
reaction. (1) Any modification of proline is not required, and the
proline catalyst can be used as it stands. (2) Commercially
available aqueous aldehydes such as dimethoxyacetaldehyde can
be employed directly. (3) In some cases a completely organic
solvent-free procedure can be achieved. As operation is simple and
scale-up is easy, the present method is suitable for the large-scale
preparation of chiral aldols.
16 G. M. M. Caro, U. J. Meierhenrich, W. A. Schutte, B. Barbier,
A. A. Segovia, H. Rosenbauer, W. H.-P. Thiemann, A. Brack and
J. M. Greenberg, Nature, 2002, 416, 403.
17 J. T. Suri, S. Mitsumori, K. Albertshofer, F. Tanaka and C. F. Barbas,
III, J. Org. Chem., 2006, 71, 3822, and references therein.
Notes and references
1 R. Noyori, Chem. Commun., 2005, 1807.
2 Comprehensive Asymmetric Catalysis I–III, ed. E. N. Jacobsen, A. Pfaltz
and H. Yamamoto, Springer, Berlin, 1999.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 957–959 | 959