Organic Process Research & Development
Page 18 of 19
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
5
6
. Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C., Merging
3
photoredox with nickel catalysis: Coupling of α-carboxyl sp -carbons with aryl halides.
Science 2014, 345, 437.
. Tóth, B. L.; Tischler, O.; Novák, Z., Recent advances in dual transition metal–visible light
photoredox catalysis. Tetrahedron Letters 2016, 57, 4505-4513.
7. Jensen, K. F., Flow chemistry—Microreaction technology comes of age. AIChE Journal 2017,
3, 858-869.
8
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
6
. Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H., The Hitchhiker’s Guide to Flow
Chemistry. Chemical Reviews 2017, 117, 11796-11893.
. Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B., Microreactor
Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries? Chemical
Engineering & Technology 2005, 28, 318-323.
0. Elliott, L. D.; Berry, M.; Harji, B.; Klauber, D.; Leonard, J.; Booker-Milburn, K. I., A Small-
Footprint, High-Capacity Flow Reactor for UV Photochemical Synthesis on the Kilogram
Scale. Organic Process Research & Development 2016, 20, 1806-1811.
1. Harper, K. C.; Moschetta, E. G.; Bordawekar, S. V.; Wittenberger, S. J., A Laser Driven Flow
Chemistry Platform for Scaling Photochemical Reactions with Visible Light. ACS Central
Science 2019, 5, 109-115.
9
1
1
12. Su, Y.; Hessel, V.; Noël, T., A compact photomicroreactor design for kinetic studies of gas-
liquid photocatalytic transformations. AIChE Journal 2015, 61, 2215-2227.
3. Mohamed, D. K. B.; Yu, X.; Li, J.; Wu, J., Reaction screening in continuous flow reactors.
Tetrahedron Letters 2016, 57, 3965-3977.
4. Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J., Visible-Light Photoredox
Catalysis in Flow. Angewandte Chemie International Edition 2012, 51, 4144-4147.
1
1
15. Booker-Milburn, K. I.; Noël, T., Flow Photochemistry. ChemPhotoChem 2018, 2, 830-830.
16. Elliott, L. D.; Knowles, J. P.; Koovits, P. J.; Maskill, K. G.; Ralph, M. J.; Lejeune, G.; Edwards,
L. J.; Robinson, R. I.; Clemens, I. R.; Cox, B.; Pascoe, D. D.; Koch, G.; Eberle, M.; Berry, M.
B.; Booker-Milburn, K. I., Batch versus Flow Photochemistry: A Revealing Comparison of
Yield and Productivity. Chemistry – A European Journal 2014, 20, 15226-15232.
1
7. Hsieh, H.-W.; Coley, C. W.; Baumgartner, L. M.; Jensen, K. F.; Robinson, R. I., Photoredox
Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to
Continuous Flow via Self-Optimizing Segmented Flow Reactor. Organic Process Research &
Development 2018, 22, 542-550.
8. Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J., Visible-light photoredox
catalysis in flow. Angewandte Chemie (International ed. in English) 2012, 51, 4144-4147.
9. Hartman, R. L., Managing Solids in Microreactors for the Upstream Continuous Processing of
Fine Chemicals. Organic Process Research & Development 2012, 16, 870-887.
1
1
20. Mo, Y.; Jensen, K. F., A miniature CSTR cascade for continuous flow of reactions containing
solids. Reaction Chemistry & Engineering 2016, 1, 501-507.
2
1. Chapman, M. R.; Kwan, M. H. T.; King, G.; Jolley, K. E.; Hussain, M.; Hussain, S.; Salama,
I. E.; González Niño, C.; Thompson, L. A.; Bayana, M. E.; Clayton, A. D.; Nguyen, B. N.;
Turner, N. J.; Kapur, N.; Blacker, A. J., Simple and Versatile Laboratory Scale CSTR for
Multiphasic Continuous-Flow Chemistry and Long Residence Times. Organic Process
Research & Development 2017, 21, 1294-1301.
22. Mo, Y.; Lin, H.; Jensen, K. F., High-performance miniature CSTR for biphasic C–C bond-
forming reactions. Chemical Engineering Journal 2018, 335, 936-944.
18
ACS Paragon Plus Environment