Journal of the American Chemical Society
Page 4 of 5
Corresponding Author
1
2
* rfasan@ur.rochester.edu
3
4
5
6
7
8
9
ACKNOWLEDGMENT
This work was supported in part by the U.S. National Institute of
Health grant GM098628 and in part by the National Science
Foundation grant CHEꢀ1609550. The authors are grateful to Dr.
William Brennessel (U. Rochester) and Dr. Eric Reinheimer
(Rigaku Oxford Diffraction) for assistance with crystallographic
analyses.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) (a) Grygorenko, O. O.; Artamonov, O. S.; Komarov, I. V.;
Mykhailiuk, P. K. Tetrahedron 2011, 67, 803; (b) Bos, M.; Poisson, T.;
Pannecoucke, X.; Charette, A. B.; Jubault, P. Chem. Eur. J. 2017, 23, in
press (doi: 10.1002/chem.201604564).
(2) (a) Katagiri, T.; Yamaji, S.; Handa, M.; Irie, M.; Uneyama, K.
Chem. Commun. 2001, 2054; (b) Wang, Y.; Zhao, X. M.; Li, Y. H.; Lu,
L. Tetrahedron Lett. 2004, 45, 7775; (c) Risse, J.; FernandezꢀZumel, M.
A.; Cudre, Y.; Severin, K. Org. Lett. 2012, 14, 3060; (d) Duncton, M. A.
J.; Singh, R. Org. Lett. 2013, 15, 4284; (e) Zhu, C. L.; Yang, L. J.; Li, S.;
Zheng, Y.; Ma, J. A. Org. Lett. 2015, 17, 3442.
Figure 3. Stereocomplementary selectivity. A) Correlation
between enantioselectivity of Mb variants (n = 12) in cyclopropaꢀ
nation of pꢀmethoxyꢀstyrene with EDA vs. DTE. See Table S1
for additional data. B) Diastereoꢀ and enantioselectivity of transꢀ
(1R,2R)ꢀselective Mb variant RR2 in cyclopropanation of arylꢀ
substituted olefins in the presence of DTE. See Table S2 for
details. * = with RR4ꢀexpressing cells.
(3) Atherton, J. H.; Fields, R. J. Chem. Soc. C 1967, 1450.
(4) (a) Le Maux, P.; Juillard, S.; Simonneaux, G. Synthesis 2006,
1701; (b) Mykhailiuk, P. K.; Afonin, S.; Ulrich, A. S.; Komarov, I. V.
Synthesis 2008, 1757; (c) Morandi, B.; Carreira, E. M. Angew. Chem. Int.
Ed. 2010, 49, 4294.
(5) Morandi, B.; Mariampillai, B.; Carreira, E. M. Angew. Chem. Int.
Ed. 2011, 50, 1101.
(6) (a) Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532;
(b) Tyagi, V.; Bonn, R. B.; Fasan, R. Chem. Sci. 2015, 6, 2488; (c) Tyagi,
V.; Fasan, R. Angew. Chem. Int. Ed. 2016, 55, 2512; (d) Tyagi, V.;
Sreenilayam, G.; Bajaj, P.; Tinoco, A.; Fasan, R. Angew. Chem. Int. Ed.
2016, 55, 13562.
(7) (a) Bordeaux, M.; Tyagi, V.; Fasan, R. Angew. Chem. Int. Ed.
2015, 54, 1744; (b) Bajaj, P.; Sreenilayam, G.; Tyagi, V.; Fasan, R.
Angew. Chem. Int. Ed. 2016, 55, 16110.
(8) (a) Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H.
Science 2013, 339, 307; (b) Renata, H.; Wang, Z. J.; Kitto, R. Z.; Arnold,
F. H. Catal. Sci. Technol. 2014, 4, 3640; (c) Wang, Z. J.; Renata, H.;
Peck, N. E.; Farwell, C. C.; Coelho, P. S.; Arnold, F. H. Angew. Chem.
Int. Ed. 2014, 53, 6810; (d) Weissenborn, M. J.; Low, S. A.; Borlinghaus,
N.; Kuhn, M.; Kummer, S.; Rami, F.; Plietker, B.; Hauer, B.
Chemcatchem 2016, 8, 1636; (e) Srivastava, P.; Yang, H.; Ellisꢀ
Guardiola, K.; Lewis, J. C. Nat. Commun. 2015, 6, 7789; (f) Dydio, P.;
Key, H. M.; Nazarenko, A.; Rha, J. Y.; Seyedkazemi, V.; Clark, D. S.;
Hartwig, J. F. Science 2016, 354, 102; (g) Key, H. M.; Dydio, P.; Clark,
D. S.; Hartwig, J. F. Nature 2016, 534, 534; (h) RiozꢀMartinez, A.;
Oelerich, J.; Segaud, N.; Roelfes, G. Angew. Chem. Int. Ed. 2016, 55,
14136.
(9) (a) Morandi, B.; Carreira, E. M. Angew. Chem. Int. Ed. 2010, 49,
938; (b) Morandi, B.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50,
9085; (c) Hyde, S.; Veliks, J.; Liegault, B.; Grassi, D.; Taillefer, M.;
Gouverneur, V. Angew. Chem. Int. Ed. 2016, 55, 3785.
(10) (a) Barrett, A. G. M.; Braddock, D. C.; Lenoir, I.; Tone, H. J.
Org. Chem. 2001, 66, 8260; (b) Wurz, R. P.; Charette, A. B. Org. Lett.
2002, 4, 4531.
In summary, we have described the development of a biocataꢀ
lytic strategy for the asymmetric synthesis of trifluoromethylꢀ
substituted cyclopropanes via myoglobinꢀcatalyzed addition of
trifluoromethylcarbene to olefins. These transformations could be
applied to a variety of vinylarene substrates, offering unpreceꢀ
dented levels of diastereoꢀ and enantioselectivity. Furthermore,
both enantiomers of the target CF3ꢀcontaining products could be
accessed using Mb catalysts with complementary stereoselectiviꢀ
ty, whose choice was guided by their reactivity with EDA. The
reactions presented here provide access to enantioenriched fluoriꢀ
nated building blocks of high value for medicinal chemistry. This
study provides a firstꢀtime demonstration that carbene donor
reagents other than αꢀdiazoesters can be engaged in biocatalytic
carbene transfer reactions. This finding, combined with the
demonstrated feasibility of coupling these reactions with ex situ
generated diazo compounds, is anticipated to enable extension of
the present approach to a variety of other carbene precursors in
order to expand the scope of carbeneꢀmediated transformations
accessible with myoglobins and other metalloprotein catalysts.
Further studies in this direction are currently underway in our
laboratory.
ASSOCIATED CONTENT
Supporting Information
Supporting information includes Supplementary Tables and Figꢀ
ures, experimental procedures, compound characterization data
andcrystallographic data.
AUTHOR INFORMATION
ACS Paragon Plus Environment