NEW ACYCLIC SCHIFF-BASE NICKEL(II) COMPLEXES
971
compound derivatives was cell wall dependent, which might be 19. Bren, V.A. Russ. Chem. Rev. 2001, 70, 1017.
20. Callan, J.C.; da Silva, A.P.; Magir, D.C. Tetrahedron 2005, 61, 8551.
the structural–activity relationship (SAR) correlation for inhi-
bition in gram-positive organisms. Hence, the results of these
compounds were promising for gram-positive antibacterial ther-
apeutic agents.
21. (a) Che, C.M.; Huang, J.S. Coord. Chem. Rev. 2003, 242, 97. (b) Venkatara-
man, N.S.; Kuppuraj, G.; Rajagopal, S. Coord. Chem. Rev. 2005,249,
1249.
22. Holm, R.H.; Kennepohl, P.; Solomon, E.I. Chem. Rev. 1996, 96, 2239.
23. Halcrow, M.A. In Comprehensive Coordination Chemistry II, L. Que and
W.B. Tolman, eds.; Elsevier-Pergamon Press: New York, 2003, Vol. 8,
p. 395.
CONCLUSIONS
24. Holm, R.H.; Solomon, E.I. Chem. Rev. 2004, 104, 347.
25. Chaudhary, A.; Bansal, N.; Gajraj, A.; Singh, R. V. J. Inorg. Biochem. 2003,
93, 393.
26. Hosseini, M.W.; Lehn, J.M.; Duff, S.R.; Gu, K.; Mertes, M.P. J. Org. Chem.
1987, 52, 1662.
27. Izan, R.M.; Brandshaw, J.S.; Neilsen, S.A.; Lamb, J.D.; Chrisensen, J.J.;
Sen, D. Chem. Rev. 1985, 85, 271.
28. Ilhan, S.; Temel, H.; Yilmaz, I.; Sekerci, M. Polyhedron 2007, 26, 2795.
29. Bertolo, E.; Bastida, R.; De Blas, W.; Fenton, D.E.; Lodeiro, C.; Macias,
A.; Rodrogues, A.; Rodriguez-Blas, T. J. Incl. Phenom. Macro. 1999, 35,
191.
30. Dalley, N.K.; Izatt, R.M.; Christensen, J.J., eds. Synthetic Multidentate
Macrocyclic Compounds; Academic Press: New York, 1978.
31. Guerriero, P.; Vigato, P.A.; Fenton, D.E.; Hellier, P.C. Acta Chem. Scand.
1992, 46, 1025.
32. Aaleh, A.A. J. Coord, Chem. 2005, 58, 255.
33. Xu, X.; Luo, Q.; Shen, M.; Huang, X.; Wu, Q. Polyhedron 1997, 16,
915.
In conclusion, five Schiff-base nickel(II) complexes have
been synthesized and their coordination chemistry and antibac-
terial activity have been investigated. The electronic spectra
of [Ni(II)L] complexes indicates square planar geometry, and
there is a red-shift due to the increase in the chain length. Cyclic
voltammograms exhibit a one-electron quasi-reversible process.
The reduction potential shifts to more negative potential on in-
creasing chain length and oxidation potential shifts to more
positive potential on increasing chain length. All the [Ni(II)L]
complexes show good catalytic activity on increasing the chain
length. Increase in the chain length causes a greater distortion of
the geometry of the complexes. This flexibility in the geometry
may favor the observed higher rate of the reaction. The com-
plexes showed remarkable activity against the two organisms
tested. [Ni(II)L1] and [Ni(II)L2] have the highest activity against
Bacillus subtilis and Staphylococcus aureus, and all derivative
compounds were able to inhibit gram-positive bacterial organ-
isms. All these studies of the complexes agree well with the
established trend.
34. Blake, A.J.; Fallis, I.A.; Gould, R.O.; Parsons, S.; Ross, S.A.; Schoder, M.
J. Chem. Soc. Dalton Trans. 1996, 4379.
35. Levine, A.; Lay, P.A.; Dixon, N.F. Inorg. Chem. 2000, 39, 385.
36. Thauer, R.K.; Diekert, G.; Schonheit, P. Trends Biochem. Sci. 1980, 5, 304.
37. Nriagu, J.O. Nickel in the Environment; Wiley: New York, 1980.
38. Mertz, W. Science 1981, 213, 1332.
39. Sunderman F.W., ed. Nickel in the Human Environment; Oxford University
Press: New York, 1985.
40. (a) Halcrow, M.A.; Christou, G. Chem. Rev. 1994, 94, 2421 (b) Kolodziej,
A.F. Prog. Inorg. Chem. 1994 ,41,493.
41. (a) Jabri, E.; Carr, M. B.; Hausinger, R.P.; Karplus, P.A. Science 1995, 268,
998. (b) Wilcox, D.E. Chem. Rev. 1996 ,96,2435.
42. Volbeda, A.; Charon, M.-H.; Piras, C.; Hatchikian, E.C.; Frey, M.;
Fontecilla-Camps, J.C. Nature (Lond.) 1995, 373, 580.
43. Volkmer, D.; Hommerich, B.; Griesar, K.; Haase, W.; Krebs, B. Inorg.
Chem. 1996, 35, 3792.
44. Beer, P.D.; Drew, M.G.B.; Leeson, P.B.; Lyssenko, K.; Ogden, M.I. J.
Chem. Soc. Chem. Commun. 1995, 929.
45. McLachlan, G.A.; Fallon, G.D.; Martin, R.L.; Moubaraki, B.; Murray, K.S.;
Spiccia, L. Inorg. Chem. 1994 ,33, 4663.
46. Ciampolini, M.; Fabbrizzi, L.; Perotti, A.; Poggi, A.; Seghi, B.; Zanobini,
F. Inorg. Chem. 1987, 26, 3527.
47. Wieghardt, K.; Tolksdorf, I.; Herrmann, W. Inorg. Chem. 1985, 24, 1230.
48. Graham, B.; Fallon, G.D.; Hearn, M.T.; Hockless, D.C.R.; Lazarev, G.;
Spiccia, L. Inorg. Chem. 1997, 36, 6366.
49. Parashar, R.K.; Sharma, R.C.; Kumar, A. Inorg. Chim. Acta 1988, 151, 201.
50. Jeewoth, T.; Bhowon, G.; Henri Li Kam Wah. Transition Metal Chem. 1999,
24, 445.
51. Gradinru, J.; Forni, A.; Druta, V.; Tessore, F.; Zecchin, S.; Quici, S. Inorg.
Chem. 2007, 46, 884.
52. Kianfar, A.H.; Mohebbib, S. J. Iran. Chem. Soc. 2007, 4, 215.
53. Rahimi-Nasrabadi, M.; Ganjali, M.R.; Gholivand, M.B.; Ahmadi, F.;
Norouzi, P.; Salavati-Niasari, M. J. Mol. Struct. 2008, 885, 76.
54. Duff, J.C. J. Chem. Soc. 1941, 547.
REFERENCES
1. Hernandez Molina, R.; Mederos, A. In Comprehensive Coordination Chem-
istry II, ed. A.B.P. Lever; Elsevier-Pergamon Press: New York, 2003, pp. 1,
411.
2. Garnovskii, A.D.; Kharisov, B.I., eds. Synthetic Coordination and
Organometallic Chemistry; Marcel Dekker: New York, 2003, p. 513.
3. Bourget-Merle, L.; Lappert, M.F.; Severn, J.R. Chem. Rev. 2002, 102, 3031.
4. Vigato, P.A.; Tamburini, S. Coord. Chem. Rev. 2004, 248, 1717.
5. Garnovskii, A.D.; Vasilchenko, I.S. Russ. Chem. Rev. 2002, 71, 943.
6. Garnovski, A.D.; Vasilchenko, I.S. Russ. Chem. Rev. 2005, 74, 193.
7. Holm, R.H.; Ewerett, M.J.; Chakravorty, A. Prog. Inorg. Chem. 1966, 7,
83.
8. Calligaris, M.; Randaccio, L. In Comprehensive Coordination Chemistry,
ed. G. Wilkinson; Pergamon Press: Oxford, 1987, pp. 2, 715.
9. Garnovskii, A.D. Russ. J. Coord. Chem. 1993, 19, 368.
10. Garnovskii, A.D.; Nivorozhkin, A.L.; Minkin, V.I. Coord. Chem. Rev. 1993,
126, 1.
11. Mueller, K.; Schert, U. Organic Light Emitting Devices; Wiley-WCH: New
York, 2006.
12. Metelitsa, A.V.; Burlov, A.S.; Bezugly, S.O.; Borodkina, I.G.; Bren, V.A.;
Garnovskii, A.D.; Minkin, V.I. Russ. J. Coord. Chem. 2006, 32, 858.
13. Kahn, O. Molecular Magnetism; WCH: New York (1993).
14. Gatteschi, D.; Sessoli, R.; Cornia, A. In Comprehensive Coordination
Chemistry II, ed. A.B.P. Lever; Elsevier-Pergamon Press: New York, 2003,
pp. 2, 393.
15. Garnovskii, A.D.; Ikorskii, V.N.; Uraev, A.I.; Antipin, M.Y.; Minkin, V.I.
J. Coord. Chem. 2007, 60, 1493.
16. Hadson, S.A.; Maitlis, P.V. Chem. Rev. 1993, 93, 861.
17. Girond-Godguin, A.M. Coord. Chem. Rev. 2001, 216, 1485.
18. Burdette, S.C.; Lippard, S.J. Coord. Chem. Rev. 2001, 216, 333.
55. Vijayaraj, A.; Narayanan, V. J. Coord, Chem. 2011, 64, 637.
56. Mohebbi, S.; Boghaei, D.M.; Sarvestani, A.H.; Salimi, A. Appl. Catal.
2005, 278, 263.