enantiomerically pure 2-methyl-1,3-diol moieties.8 The short
and efficient access to such highly substituted fragments
encouraged us to check if the combination of the reductive
cyclization and the Reformatsky-like process could open the
way to the stereocontrolled synthesis of highly substituted
oxygen heterocycles. We now report our preliminary results,
evidencing that 2,3,6-trialkyl-substituted THP and 2,3,5-
trialkyl-4-hydroxy-substituted THF are available in three
steps starting from R-bromo-R′-sulfinyl ketones. Three or
four new stereogenic centers can be created using an
enantiomerically pure tert-butyl sulfoxide as the unique
source of chirality. The accessibility of both diastereoisomeric
hydroxy sulfinyl moieties by the well-established DIBALH
and Lewis acid/DIBALH reduction9 of the corresponding
â-ketosulfoxides10 prompted us to investigate the behavior
of the acyclic derivatives bearing the two possible relative
configurations at the â-hydroxysulfinyl moiety.
The retrosynthesis envisaged to THP or THF derivatives
I (Scheme 1), based on the reductive cyclization process,
Scheme 1. Retrosynthetic Analysis for the Stereoselective
Synthesis of Highly Substituted THP and THF Derivatives
(5) For reviews, see: (a) Wolfe, J. P.; Hay, M. B. Tetrahedron 2007,
63, 261-290. (b) Wolfe, J. P. Eur. J. Org. Chem. 2007, 571-582. (c)
Shindo, M. Top. Heterocycl. Chem. 2006, 179-254. (d) Clarke, P. A.;
Santos, S. Eur. J. Org. Chem. 2006, 2045-2053. (e) Elliot, M. C. J. Chem.
Soc., Perkin Trans. 1 2002, 2301-2323 and earlier reviews in the same
series. (f) Norcross, R. D.; Paterson, I. Chem. ReV. 1995, 95, 2041-2114.
(g) Biovin, T. L. B. Tetrahedron 1987, 43, 3309-3362. Recent references
on tetrahydrofurans: (h) Pan, J.; Zhang, W.; Zhang, J.; Lu, S. Tetrahedron
Lett. 2007, 48, 2781-2785. (i) Chavre, S. N.; Choo, H.; Cha, J. H.; Pae,
A. N.; Choi, K. I.; Cho, Y. S. Org. Lett. 2006, 8, 3617-3619. (j) Hay, M.
B.; Wolfe, J. P. Tetrahedron Lett. 2006, 47, 2793-2796. (k) Akindele, T.;
Marsden, S. P.; Cumming, J. G. Org. Lett. 2005, 7, 3685-3688. (l) Hodgson,
D. M.; Le Strat, F.; Avery, T. D.; Donohue, A. C.; Bru¨ckl, T. J. Org. Chem.
2004, 69, 8796-8803. (m) Renaud, P.; Beaufils, F.; Feray, L.; Schenk, K.
Angew. Chem., Int. Ed. 2003, 42, 4230-4233. (n) Villar, F.; Kolly-Kovac,
T.; Equey, O.; Renaud, P. Chem.sEur. J. 2003, 9, 1566-1577. Recent
references on tetrahydropyrans: (o) Tian, G.-Q.; Shi, M. Org. Lett. 2007,
9, 2405-2408. (p) Song, Z.; Hsung, R. P. Org. Lett. 2007, 9, 2199-2202.
(q) Liu, F.; Loh, T.-P. Org. Lett. 2007, 9, 2063-2066. (r) Biermann, U.;
Lu¨tzen, A.; Metzger, J. O. Eur. J. Org. Chem. 2006, 2631-2637. (s) Jervis,
P. J.; Kariuki, B. M.; Cox, L. R. Org. Lett. 2006, 8, 4649-4652. (t) Banerjee,
B.; Roy, S. C. Eur. J. Org. Chem. 2006, 489-497. (u) Kataoka, K.; Ode,
Y.; Matsumoto, M.; Nokami, J. Tetrahedron 2006, 62, 2471-2483. (v)
Bolla, M. L.; Patterson, B.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005,
127, 16044-16045. (w) Dubost, C.; Marko´, I. E.; Bryans, J. Tetrahedron
Lett. 2005, 46, 4005-4009.
(6) (a) Carren˜o, M. C.; Herna´ndez-Torres, G.; Urbano, A.; Colobert, F.
Org. Lett. 2005, 7, 5517-5520. (b) Carren˜o, M. C.; Des Mazery, R.; Urbano,
A.; Colobert, F.; Solladie´, G. Org. Lett. 2005, 7, 2039-2042. (c) Carren˜o,
M. C.; Des Mazery, R.; Urbano, A.; Colobert, F.; Solladie´, G. Org. Lett.
2004, 6, 297-299. (d) Carren˜o, M. C.; Des Mazery, R.; Urbano, A.;
Colobert, F.; Solladie´, G. J. Org. Chem. 2003, 68, 7779-7787.
(7) Overviews: (a) Hanquet, G.; Colobert, F.; Lanners, S.; Solladie´, G.
ARKIVOC 2003, 7, 328-401. (b) Carren˜o, M. C. Chem. ReV. 1995, 95,
1717-1760. Recent work: (c) Carren˜o, M. C.; Merino, E.; Ribagorda, M.;
Somoza, A.; Urbano, A. Chem.sEur. J. 2007, 13, 1064-1067. (d) Carren˜o,
M. C.; Ribagorda, M.; Somoza, A.; Urbano, A. Chem.sEur. J. 2007, 13,
879-890. (e) Broutin, P.-E.; Colobert, F. Org. Lett. 2005, 7, 3737-3740.
(f) Broutin, P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113-1128.
(8) (a) Obringer, M.; Colobert, F.; Solladie´, G. Eur. J. Org. Chem. 2006,
1455-1467. (b) Obringer, M.; Colobert, F.; Neugnot, B.; Solladie´, G. Org.
Lett. 2003, 5, 629-632.
(9) Early work: (a) Carren˜o, M. C.; Garc´ıa Ruano, J. L.; Mart´ın, A.;
Pedregal, C.; Rodr´ıguez, J. H.; Rubio, A.; Sa´nchez, J.; Solladie´, G. J. Org.
Chem. 1990, 55, 2120-2128. Recent examples: (b) Raghavan, S.;
Krishnaiah, V. Tetrahedron Lett. 2006, 47, 7611-7614. (c) Cardellicchio,
C.; Omar, O. H.; Naso, F.; Capozzi, M. A. M.; Capitellic, F.; Bertolasi, V.
Tetrahedron: Asymmetry 2006, 17, 223-229. (d) Des Mazery, R.; Pullez,
M.; Lo´pez, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am.
Chem. Soc. 2005, 127, 9966-9967. (e) Izzo, I.; Crumbie, R.; Solladie´, G.;
Hanquet, G. Tetrahedron: Asymmetry 2005, 16, 1503-1511. (f) Bedford,
S. T.; Grainger, R. S.; Steed, J. W.; Tisselli, P. Org. Biomol. Chem. 2005,
3, 404-406.
(10) For recent synthetic applications of â-ketosulfoxides, see: (a) Khiri,
N.; Lefranc, A.; Solladie´, G.; Hanquet, G. Tetrahedron Lett. 2005, 46,
5807-5810. (b) Garc´ıa Ruano, J. L.; Garc´ıa Paredes, C.; Alema´n, J.
ARKIVOC 2005, 9, 253-265. (c) Brinkmann, Y.; Carren˜o, M. C.; Urbano,
A.; Colobert, F.; Solladie´, G. Org. Lett. 2004, 6, 4335-4338. (d) Carren˜o,
M. C.; Sanz-Cuesta, M. J.; Colobert, F.; Solladie´, G. Org. Lett. 2004, 6,
3537-3540.
required the preparation of acyclic dihydroxy ketones II (n
) 0, 1), in turn available with both R or S configuration at
the â-hydroxy sulfinyl moiety using the diastereodivergent
reduction of monoprotected diketosulfoxides III. We envis-
aged the use of a SmI2-promoted Reformatsky reaction to
assemble the enantiopure bromosulfinyl ketone IV with
protected R- (n ) 0) or â- (n ) 1) ketoaldehydes V. The
synthetic versatility of the sulfoxide present in the final
targets, which could be transformed into other functional
groups, could increase the interest of our method later for
future applications.
To evaluate our retrosynthetic approach to the tetrahy-
dropyranyl derivatives, we decided to synthesize two series
of analogues bearing a methyl and a propyl substituent due
to the accessibility of the required â-ketoaldehydes, easily
prepared as protected dioxolanes using known methods.11
Enantiomerically pure γ-bromo-â-ketosulfoxide 3, neces-
sary for the Reformatsky-like reaction, was synthesized, as
previously reported,8b,12 by reaction of the lithium anion
derived from (R)-methyl tert-butyl sulfoxide (2) with methyl
2-bromopropionate 1, in 95% yield (Scheme 2). The SmI2-
promoted reaction between 3 and the aldehyde 4 gave the
Reformatsky adduct 5 with 73% yield and 93:7 dr. It is worth
mentioning that the success of this transformation required
the use of a recently prepared SmI2/THF solution. The
analogue reaction with aldehyde 6 led to hydroxy â-keto-
sulfoxide 7 in 86% yield and 93:7 dr (Scheme 2).
The reduction of 5 and 7 with DIBALH gave rise to the
exclusive formation of 1,3-syn-diol derivatives 8 and 9 as a
consequence of the hydride attack from the re face of the
carbonyl group directed by the sulfoxide.9 When the reduc-
tion was carried out with DIBALH/Yb(OTf)3, the corre-
sponding anti-2-methyl-1,3-diols 10 and 11 were formed with
good yields and selectivities (Scheme 2). We were able to
obtain diastereomerically pure 8, 9, 10, and 11 after
chromatographic separation. The absolute configuration of
the major diastereomer 11 was confirmed by X-ray diffrac-
tion (Figure 1).13
(11) Tan, J. S.; Ciufolini, M. A. Org. Lett. 2006, 8, 4771-4774.
(12) Bravo, P.; Resnatti, G. Tetrahedron Lett. 1985, 26, 5601-5604.
4452
Org. Lett., Vol. 9, No. 22, 2007