V. Rai, I. N. N. Namboothiri
FULL PAPER
lov, S. B. Tsogoeva, S. Schmatz, Adv. Synth. Catal. 2006, 348,
Am. Chem. Soc. 2000, 122, 4145; n) R. G. Parr, L.
von Szentpaly, S. Liu, J. Am. Chem. Soc. 1999, 121, 1922; o) J.
Padmanabhan, R. Parthasarathy, V. Subramanian, P. K. Chat-
taraj, J. Phys. Chem. A 2006, 110, 2739; p) W. Kohn, A. D.
Becke, R. G. Parr, J. Phys. Chem. 1996, 100, 12974; q) B. Pinter,
F. De Proft, T. Veszpremi, P. Geerlings, J. Chem. Sci. 2005, 117,
561; r) F. De Proft, C. Van Alsenoy, P. Geerlings, J. Phys.
Chem. 1996, 100, 7440.
826; e) S. B. Tsogoeva, S. Wei, Chem. Commun. 2006, 13, 1451;
f) S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu, J.-P. Cheng, Angew.
Chem. Int. Ed. 2006, 45, 3093; g) N. Mase, K. Watanabe, H.
Yoda, K. Takabe, F. Tanaka, C. F. Barbas III, J. Am. Chem.
Soc. 2006, 128, 4966; h) V. Rai, S. M. Mobin, I. N. N. Nam-
boothiri, 231st ACS National Meeting, ORGN 37, Abstracts
of Papers, Atlanta, GA, USA, March 26–30, 2006.
[
6b]
[
[
9] a) See ref. ; b) I. N. N. Namboothiri, A. Hassner, J. Or-
ganomet. Chem. 1996, 518, 69 and the references cited therein;
c) C.-M. Chu, J.-T. Liu, W.-W. Lin, C.-F. Yao, J. Chem. Soc.,
Perkin Trans. 1 1999, 47.
[21] a) H. Chermette, J. Comput. Chem. 1999, 20, 129; b) T. Mineva,
N. Neshev, N. Russo, E. Silicia, M. Toscano, Adv. Quant.
Chem. 1999, 33, 273; c) P. Geerlings, F. De Proft, W. Langenae-
kar, Adv. Quant. Chem. 1999, 33, 301; d) F. De Proft, P. Geer-
lings, Chem. Rev. 2001, 101, 1451.
10] a) K. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn. 1968,
4
1, 815; b) A. B. Baylis, M. E. D. Hillman, Ger. Offen. 1972,
[22] a) R. Meza, B. Gordillo, M. Galvan, Int. J. Quant. Chem. 2005,
104, 29; b) see ref.[ ; c) see ref.
15]
[16a]
DE2155113 (Chem. Abstr. 1972, 77, 434174); M. E. D. Hill-
man, A. B. Baylis, U.S. Patent 1973, 3743669; for recent re-
views, see: c) D. Basavaiah, A. J. Rao, T. Satyanarayana, Chem.
Rev. 2003, 103, 811; d) P. Langer, Organic Synthesis Highlights
V (Eds.: H.-G. Schmalz, T. Wirth), Wiley-VCH, Weinheim,
Germany, 2003, p. 165; see also: e) T. Kataoka, H. Kinoshita,
Eur. J. Org. Chem. 2005, 45.
[23] a) J. Poater, M. Duran, M. Sola, B. Silvi, Chem. Rev. 2005, 105,
3911 and the references cited therein; b) R. H. Mitchell, Chem.
Rev. 2001, 101, 1301; c) see ref.[
21d]
[
[
[
24] R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512.
[20n]
25] See ref.
26] a) R. G. Parr, W. Yang, J. Am. Chem. Soc. 1984, 106, 4049; b)
[
[
11] For recent reports on the MBH reaction of nitroalkenes, see:
a) I. Deb, M. Dadwal, S. M. Mobin, I. N. N. Namboothiri,
Org. Lett. 2006, 8, 1201; b) M. Dadwal, R. Mohan, D. Panda,
S. M. Mobin, I. N. N. Namboothiri, Chem. Commun. 2006,
W. Yang, R. G. Parr, Proc. Natl. Acad. Sci. 1985, 82, 6723.
[20k]
[
[
27] See ref.
28] a) W. Yang, W. J. Mortier, J. Am. Chem. Soc. 1986, 108, 5708;
b) L. R. Domingo, M. Arno, R. Contreras, P. Perez, J. Phys.
Chem. A 2002, 106, 952.
29] P. Perez, J. Phys. Chem. A 2003, 107, 522.
30] P. Perez, A. Toro-Labbe, A. Aizman, R. Contreras, J. Org.
Chem. 2002, 67, 4747.
3
38; c) N. Rastogi, I. N. N. Namboothiri, Tetrahedron Lett.
2004, 45, 4745; d) M. Dadwal, S. M. Mobin, I. N. N. Nam-
[
[
boothiri, Org. Biomol. Chem. 2006, 338; for a related work, see:
e) R. Ballini, L. Barboni, G. Bosica, D. Fiorini, E. Mignini, A.
Palmieri, Tetrahedron 2004, 60, 4995.
[
31] L. R. Domingo, M. J. Aurell, P. Perez, R. Contreras, J. Phys.
12] a) C. F. Bernasconi, R. A. Renfrow, P. R. Tia, J. Am. Chem.
Soc. 1986, 108, 4541; b) C. F. Bernasconi, Tetrahedron 1989,
Chem. A 2002, 106, 6871.
[32] a) Ref.[13]; b) S. Hoz, J. Org. Chem. 1982, 47, 3545; c) S. Hoz,
D. Speizman, J. Org. Chem. 1983, 48, 2904.
45, 4017 and references cited therein.
[
[
13] S. Hoz, Z. Gross, J. Am. Chem. Soc. 1988, 110, 7489.
14] K. Ananthakumar, A. Sarathi, C. Gnanasekaran, A. Shunmu-
gasundaram, Indian J. Chem. 2003, 42B, 1943.
[33] Since electronic distribution is mainly responsible for atomic
charges, and the former can be characterized in terms of NMR
chemical shifts, the theoretical level that was found suitable for
calculating the chemical shift values was used for calculating
the natural charges, as well. This is despite the fact that chemi-
cal shifts are also dependent on other factors, such as diamag-
netic effects, which will not contribute to the atomic charges
but could influence the chemical shifts. However, the magni-
tude of this electron density is determined by the extent of delo-
calization in the system, which is again responsible for atomic
charges. Therefore, the change in chemical shifts due to a dia-
magnetic effect, in all probability, will be proportional to the
change in atomic charges. See several reviews in Chem. Rev.
[
[
[
15] P. Mondal, K. K. Hazarika, R. C. Deka, Phys. Chem. Com-
mun. 2003, 6, 24.
16] a) L. R. Domingo, P. Perez, R. Contreras, Tetrahedron 2004,
60, 6585; b) L. R. Domingo, Eur. J. Org. Chem. 2004, 4788.
17] a) J. P. Foster, F. A. Weinhold, J. Am. Chem. Soc. 1980, 102,
7
211; b) A. E. Reed, F. A. Weinhold, J. Am. Chem. Soc. 1985,
89, 2688; c) A. E. Reed, F. A. Weinhold, R. Weiss, J. Macheleid,
J. Phys. Chem. 1985, 89, 2688; d) A. E. Reed, R. B. Weinstock,
F. A. Weinhold, J. Chem. Phys. 1985, 83, 735; e) A. E. Reed,
F. A. Weinhold, J. Phys. Chem. 1986, 84, 2428; f) A. E. Reed,
F. A. Weinhold, J. Am. Chem. Soc. 1986, 108, 3586; g) J. T.
Nelson, W. J. Pietro, Inorg. Chem. 1989, 28, 544.
2001, 101 that discuss aromaticity, ring current, structural as-
pects, and DFT at conceptual and computational levels.
34] Although the geometry varies considerably within nitroalkenes,
the opposite polarization of the C-α–C-β bond in β-nitrosty-
rene (1) and 1-(2-furyl)-2-nitroethylene (8) is not attributable
to geometric features, because benzene and furan rings in 1
and 8, respectively, have similar σ-bond bendings (Table S1,
Supporting Information).
[
[
[
18] a) S. Woodward, Tetrahedron 2002, 58, 1017 and the references
cited therein; b) A. K. Chandra, M. T. Nguyen, Int. J. Mol.
Sci. 2002, 3, 310.
19] a) R. G. Parr, W. Yang, Density Functional Theory of Atoms
and Molecules, Oxford University Press, Oxford, 1989; b) R. G.
Parr, W. Yang, Ann. Rev. Phys. Chem. 1995, 46, 701.
20] a) G. Madzarova, A. Tadzer, Tz. P. Cholakova, A. A. Dobrev,
T. Mineva, J. Phys. Chem. A 2005, 109, 387 and references cited
therein; b) C. Spino, H. Rezaei, Y. L. Dory, J. Org. Chem. 2004,
[
[
35] Second-order perturbation analysis shows that the hyperconju-
gative contribution towards the C-α–C-β bond by four allylic
–
1
hydrogen atoms is 2.82 kcalmol , which is far less than the
6
9, 757; c) J. Melin, F. Aparicio, V. Subramanian, M. Galvan,
contribution of the phenyl ring in β-nitrostyrene (1,
P. K. Chattaraj, J. Phys. Chem. A 2004, 108, 2487; d) G. Roos,
S. Loverix, F. De Proft, L. Wyns, P. Geerlings, J. Phys. Chem.
A 2003, 107, 6828; e) H.-T. Chen, J.-J. Ho, J. Phys. Chem. A
–
1
1
4.1 kcalmol ). The contribution of the trans H atom in nitro-
–
1
ethylene (14) towards the C-α–C-β bond is only 0.13 kcalmol .
36] a) R. G. Pearson, Chemical Hardness: Application from Mole-
cules to Solid, Wiley-VCH, Weinheim, 1997; b) K. D. Sen,
D. M. P. Mingos, Chemical Hardness: Structure and Bonding,
Springer, Berlin, 1993, vol. 80; c) See ref.[
[
2
003, 107, 7643; f) G. I. Ca’rdenas-Jiro’n, E. Parra-Villalobos,
J. Phys. Chem. A 2003, 107, 11483; g) P. K. Chattaraj, B. Maiti,
J. Am. Chem. Soc. 2003, 125, 2705; h) B. Gomez, P. K. Chatta-
raj, E. Chamorro, R. Contreras, P. Fuentealba, J. Phys. Chem.
A 2002, 106, 11233; i) K. R. S. Chandrakumar, S. Pal, J. Phys.
Chem. A 2002, 106, 11775; j) J. Olah, C. V. Alsenoy, A. B. San-
nigrahi, J. Phys. Chem. A 2002, 106, 3885; k) P. K. Chattaraj,
J. Phys. Chem. A 2001, 105, 511; l) M. V. Lebedev, J. Phys.
Chem. B 2001, 105, 511; m) S. Pal, K. R. S. Chandrakumar, J.
18a]
[
37] K. Fukui, Science 1982, 218, 747.
1
[38] a) NMR spectra ( H) were recorded with an AMX-400 or
VXR-300S spectrometer with TMS as the internal standard.
For reports on the Michael addition of 2-propene-1-thiol to
nitroalkenes, see: b) A. Hassner, W. Dahaen, J. Org. Chem.
4702
www.eurjoc.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2006, 4693–4703