ChemComm
Communication
1 (a) S. Horike, D. Tanaka, K. Nakagawa and S. Kitagawa, Chem.
Commun., 2007, 3395; (b) B. L. Chen, C. D. Liang, J. Yang,
D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi and
S. Dai, Angew. Chem., Int. Ed., 2006, 45, 1390; (c) S. Q. Ma, D. F. Sun,
X. S. Wang and H. C. Zhou, Angew. Chem., Int. Ed., 2007, 46, 2458;
(d) S. Shimomura, S. Horike, R. Matsuda and S. Kitagawa, J. Am.
Chem. Soc., 2007, 129, 10990; (e) T. K. Kim and M. P. Suh, Chem.
Commun., 2011, 47, 4258; ( f ) M. Eddaoudi, J. Kim, N. Rosi,
D. Vodak, J. Wachter, M. O’Keeffe and O. M. Yaghi, Science, 2002,
295, 469; (g) L. Wen, P. Cheng and W. B. Lin, Chem. Sci., 2012,
3, 2288; (h) H. J. Park and M. P. Suh, Chem. Sci., 2013, 4, 685.
´
2 (a) Y. Takashima, V. M. Martınez, S. Furukawa, M. Kondo, S. Shimomura,
H. Uehara, M. Nakahama, K. Sugimoto and S. Kitagawa, Nat. Commun.,
2011, 2, 168; (b) Z. Z. Lu, R. Zhang, Y. Z. Li, Z. J. Guo and H. G. Zheng,
J. Am. Chem. Soc., 2011, 133, 4172; (c) W. G. Lu, L. Jiang, X. L. Feng and
T. B. Lu, Inorg. Chem., 2009, 48, 6997; (d) K. C. Stylianou, R. Heck,
S. Y. Chong, J. Bacsa, J. T. A. Jones, Y. Z. Khimyak, D. Bradshaw and
M. J. Rosseinsky, J. Am. Chem. Soc., 2010, 132, 4119.
Fig. 5 Enthalpy of adsorption plots as a function of the amount of CO2 uptake.
3 (a) M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc.,
1994, 116, 1151; (b) Y. K. Hwang, D. Y. Hong, J. S. Chang,
S. H. Jhung, Y. K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre and
The CO2, N2 and O2 sorptions were also performed at near
room temperature. Interestingly, 1d shows selective gas adsorp-
tion for CO2 over N2 and O2 at 273 and 298 K. The amounts of
CO2 uptake by 1d are 44.2 cm3 (STP) gꢂ1 at 273 K and 23.6 cm3
(STP) gꢂ1 at 298 K, while almost no N2 and O2 adsorptions are
observed for 1d under the same conditions. The ideal adsorbed
solution theory (IAST) method11 was used to estimate the
adsorption selectivity of CO2 over N2 and O2 (Fig. S11 and
S12, ESI†). The predicted adsorption selectivity of CO2–N2 for
an equimolar mixture of CO2–N2 is 30.9 at 273 K and 28.3 at
298 K, respectively, and the predicted CO2–O2 selectivity for an
equimolar mixture of CO2 and O2 is 24.7 at 273 K and 22.1 at
298 K, respectively. 1d exhibits better CO2–N2 selectivity than
PCN-61 (B15)11c and SNU-1000 (26.5)1h at 298 K, indicating
that 1d may have potential applications in the separation of
the CO2–O2 mixture and the CO2–N2 mixture. The selective
sorption of CO2 rather than N2 and O2 can be attributed to
the quadrupole moment of CO2 (ꢂ1.4 ꢁ 10ꢂ39 cm2), which
generates specific interactions with the framework.12 To better
understand the interactions between CO2 and the framework of
1d, we calculated the isosteric heat Qst of CO2 adsorption for 1d
at 273 K by the Clausius–Clapeyron method.9a As shown in
Fig. 5, the adsorption enthalpy for 1d at zero loading is
approximately 31.3 kJ molꢂ1, which is higher than the values
´
G. Ferey, Angew. Chem., Int. Ed., 2008, 47, 4144; (c) F. J. Ma, S. X. Liu,
C. Y. Sun, D. D. Liang, G. J. Ren, F. Wei, Y. G. Chen and Z. M. Su,
˘
J. Am. Chem. Soc., 2011, 133, 4178; (d) S. Horike, M. Dinca, K. Tamaki
and J. R. Long, J. Am. Chem. Soc., 2008, 130, 5854.
4 (a) W. S. Liu, T. Q. Jiao, Y. Z. Li, Q. Z. Liu, M. Y. Tan, H. Wang and
L. F. Wang, J. Am. Chem. Soc., 2004, 126, 2280; (b) B. L. Chen,
L. B. Wang, Y. Q. Xiao, F. R. Fronczek, M. Xue, Y. J. Cui and
G. D. Qian, Angew. Chem., Int. Ed., 2009, 48, 500; (c) A. Thibon and
V. C. Pierre, J. Am. Chem. Soc., 2009, 131, 434.
5 (a) Y. E. Cheon and M. P. Suh, Angew. Chem., Int. Ed., 2009, 48, 2899;
¨
(b) F. Schroder, D. Esken, M. Cokoja, M. W. E. van den Berg, O. I.
Lebedev, G. Van Tendeloo, B. Walaszek, G. Buntkowsky, H.-H. Limbach,
B. Chaudret and R. A. Fischer, J. Am. Chem. Soc., 2008, 130, 6119;
(c) C. H. Liang, W. Xia, M. van den Berg, Y. M. Wang, H. Soltani-Ahmadi,
O. Schlu¨ter, R. A. Fischer and M. Muhler, Chem. Mater., 2009, 21, 2360;
(d) C. Petit and T. J. Bandosz, J. Mater. Chem., 2009, 19, 6521.
ˆ ´
6 (a) A. C. Sudik, A. R. Millward, N. W. Ockwig, A. P. Cote, J. Kim and
O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 7110; (b) L. Pan,
K. M. Adams, H. E. Hernandez, X. T. Wang, C. Zheng, Y. Hattori
and K. Kaneko, J. Am. Chem. Soc., 2003, 125, 3062; (c) T. Devic,
´
C. Serre, N. Audebrand, J. Marrot and G. Ferey, J. Am. Chem. Soc.,
2005, 127, 12788; (d) J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt,
S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450.
7 (a) S. T. Zheng, T. Wu, J. Zhang, M. Chow, R. A. Nieto, P. Y. Feng and
X. H. Bu, Angew. Chem., Int. Ed., 2010, 49, 5362; (b) X. Zhao, T. Wu,
S. T. Zheng, L. Wang, X. H. Bu and P. Y. Feng, Chem. Commun., 2011,
47, 5536; (c) S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am.
Chem. Soc., 2008, 130, 10870; (d) A. M. Bohnsack, I. A. Ibarra,
P. W. Hatfield, J. W. Yoon, Y. K. Hwang, J. S. Chang and
S. M. Humphrey, Chem. Commun., 2011, 47, 4899.
of the PCN-6X series (PCN-61, 21.0 kJ molꢂ1; PCN-66, 26.2 kJ molꢂ1
PCN-68, 21.2 kJ molꢂ1 13 and SNU-1000 (29.3 kJ molꢂ1),1h implying
;
˘
8 (a) M. Dinca and J. R. Long, J. Am. Chem. Soc., 2005, 127, 9376;
(b) I. Senkovska, J. Fritsch and S. Kaskel, Eur. J. Inorg. Chem., 2007,
5475; (c) A. Mesbah, C. Juers, F. Lacouture, S. Mathieu, E. Rocca,
M. François and J. Steinmetz, Solid State Sci., 2007, 9, 322;
(d) J. Zhang, S. M. Chen, H. Valle, M. Wong, C. Austria, M. Cruz
and X. H. Bu, J. Am. Chem. Soc., 2007, 129, 14168; (e) K. Sumida,
C. M. Brown, Z. R. Herm, S. Chavan, S. Bordiga and J. R. Long, Chem.
Commun., 2011, 47, 1157; ( f ) C. A. Williams, A. J. Blake, C. Wilson,
)
relatively strong interactions between the CO2 and the pore surface
of 1d.
In conclusion, we have successfully constructed a novel two-
fold interpenetrating Mg-based 3D MOF containing large nano-
scale cages with a diameter of 2.3 nm. The desolvated solid 1d
exhibits selective gas adsorption for CO2 over N2 and O2 around
room temperature, indicating that the present material can be
potentially applied in a CO2 capture process.
¨
P. Hubberstey and M. Schroder, Cryst. Growth Des., 2008, 8, 911.
9 (a) J. J. Perry IV., V. Ch. Kravtsov, G. J. McManus and
M. J. Zaworotko, J. Am. Chem. Soc., 2007, 129, 10076;
(b) Z. J. Zhang, W. Shi, Z. Niu, H. H. Li, B. Zhao, P. Cheng,
D. Z. Liao and S. P. Yan, Chem. Commun., 2011, 47, 6425.
10 A. L. Spek, PLATON 99: A Multipurpose Crystallographic Tool, Utrecht
University, Utrecht, The Netherlands, 1999.
11 (a) Y. S. Bae, K. L. Mulfort, H. Frost, P. Ryan, S. Punnathanam,
L. J. Broadbelt, J. T. Hupp and R. Q. Snurr, Langmuir, 2008, 24, 8592;
(b) J. Peng, H. Y. Ban, X. T. Zhang, L. J. Song and Z. L. Sun, Chem.
Phys. Lett., 2005, 401, 94; (c) B. S. Zheng, J. F. Bai, J. G. Duan,
L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748.
This work was supported by 973 Program of China
(2012CB821705), NSFC (grant no. 20831005, 21121061 and
91127002), and NSF of Guangdong Province (S2012030006240).
Notes and references
%
‡ Crystal data for 1 (C270H368N26O143Mg16): cubic, space group Im3m, 12 S. Coriani, A. Halkier, A. Rizzo and K. Ruud, Chem. Phys. Lett., 2000,
a = b = c = 35.1938(1) Å, V = 43591.2(2) Å3, Mr = 6654.86, Z = 6, rcalcd
=
326, 269.
1.521 g cmꢂ3, m = 1.352 mmꢂ1, T = 150(2) K, R1 = 0.1487, wR2 = 0.2497, 13 D. Q. Yuan, D. Zhao, D. F. Sun and H. C. Zhou, Angew. Chem.,
GOF = 1.010 for 3203 reflections with I > 2s(I). CCDC 913523 (1).
Int. Ed., 2010, 49, 5357.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 1753--1755 1755