5
780
S. Watanabe et al. / Tetrahedron Letters 51 (2010) 5778–5780
1999, 55, 6375; (k) Arai, S.; Shioiri, T. Tetrahedron 2002, 58, 1407; (l) Arai, S.;
Tokumaru, K.; Aoyama, T. Tetrahedron Lett. 2004, 45, 1845; (m) Achard, T. R. J.;
Belokon, Y. N.; Ilyin, M.; Moskalenko, M.; North, M.; Pizzato, F. Tetrahedron Lett.
2007, 48, 2965.
(a) Sano, S.; Miyamoto, M.; Mitani, T.; Nagao, Y. Heterocycles 2006, 68, 459; (b)
Achard, T. J. R.; Belokon’, Y. N.; Hunt, J.; North, M.; Pizzatto, F. Tetrahedron Lett.
HO
Se
Li
4
.
.
O
2007, 48, 2965; (c) Liu, W.-J.; Lv, B.-D.; Gong, L.-Z. Angew. Chem., Int. Ed. 2009,
Lewis Acid
4
1
8, 6503; (d) Guillena, G.; Hita, M. C.; Nájera, C. Tetrahedron: Asymmetry 2007,
8, 1272.
Brønsted Base
5
(a) Kataoka, T.; Banno, Y.; Watanabe, S.-i.; Iwamura, T.; Shimizu, H. Tetrahedron
Lett. 1997, 38, 1809; (b) Kataoka, T.; Watanabe, S.-i.; Yamamoto, K.;
Yoshimatsu, M.; Tanabe, G.; Muraoka, O. J. Org. Chem. 1998, 63, 6382; (c)
Kataoka, T.; Watanabe, S.-i.; Yamamoto, K. Tetrahedron Lett. 1999, 40, 931; (d)
Watanabe, S.-i.; Yamamoto, K.; Itagaki, Y.; Iwamura, T.; Iwama, T.; Kataoka, T.
Tetrahedron 2000, 56, 855; (e) Watanabe, S.-i.; Mori, E.; Nagai, H.; Iwamura, T.;
Iwama, T.; Kataoka, T. J. Org. Chem. 2000, 65, 8893; (f) Watanabe, S.-i.;
Yamamoto, K.; Itagaki, Y.; Iwamura, T.; Iwama, T.; Kataoka, T.; Tanabe, G.;
Muraoka, O. J. Chem. Soc., Perkin Trans. 1 2001, 239; (g) Watanabe, S.-i.;
Kusumoto, T.; Yoshida, C.; Kataoka, T. Chem. Commun. 2001, 839; (h) Watanabe,
S.-i.; Ikeda, T.; Kataoka, T.; Tanabe, G.; Muraoka, O. Org. Lett. 2003, 5, 565; (i)
Watanabe, S.-i.; Asaka, S.; Kataoka, T. Tetrahedron Lett. 2004, 45, 7459; (j)
Watanabe, S.-i.; Nakayama, I.; Kataoka, T. Eur. J. Org. Chem. 2005, 1493; (k)
Watanabe, S.-i.; Miura, Y.; Iwamura, T.; Nagasawa, H.; Kataoka Tetrahedron Lett.
Figure 1. Formation of the complex between selenide 6 and LiOH.
2
2 2
). The lower solubility of lithium hydroxide for CH Cl was im-
proved by the addition of chalcogenides as a Lewis base, which
can interact with lithium cations. On the other hand, the yields
and enantioselectivities are greatly enhanced by using bis hydroxy
selenide 6, which would form the chair conformation with the lith-
ium cation, selenium atom, and oxygen atom after the deprotona-
tion from one of the hydroxy groups. In addition, the weak
interaction between selenium atoms and lithium cations makes
the selenium atom electron-deficient, and the oxygen atom in an-
other hydroxy group would then interact with the electron-poor
selenium atom to construct a selenurane-type intermediate pos-
sesses both a Lewis acid part and a Brønsted base part (Fig. 1). The
difference in the reactions using 6 and 10 is attributed to easy for-
mation of selenuranes compared to that of sulfuranes. Unfortu-
nately, the observation of the interaction between Se and Li by
NMR was unsuccessful.
In conclusion, we found that a catalytic amount of chalcoge-
nides accelerated the oxirane preparation reaction of phenacyl bro-
mide and an aldehyde with lithium hydroxide. In particular, the
complexation of di-exo-2-hydroxy-10-bornyl selenide 6 with lith-
ium hydroxide formed a novel Lewis acid/Brønsted base catalyst
to give good yield and moderate stereoselectivities through the
Darzens reaction pathway. The mechanism for the enantioselectiv-
ity in the reaction is currently under investigation.
2007, 48, 813.
6
.
Magdesieva, M. M.; Chovnikova, N. G. Zh. Org. Khim. 1979, 15, 2402.
7. (a) Matano, Y. J. Chem. Soc. 1994, 2703; (b) Fuglseth, E.; Krane Thvedt, T. H.;
Førde Møll, M.; Hoff, B. H. Tetrahedron 2008, 64, 7318–7323.
1
4c
8
.
(a) Furukawa, N.; Okano, K.; Fujihara, H. Nippon Kagaku Kaishi 1987, 1353; (b)
Zhou, Y.-G.; Hou, X.-L.; Dai, L.-X.; Xia, L.-J.; Tang, M.-H. J. Chem. Soc., Perkin
Trans. 1 1999, 77; (c) Johnson, A. W.; Amer, R. T. J. Org. Chem. 1969, 34, 1240.
9. (a) Furukawa, N.; Sugihara, Y.; Fujihara, H. J. Org. Chem. 1989, 54, 4222; (b)
Aggarwal, V. K.; Alonso, E.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Porcelloni, M.;
Studley, J. R. Angew. Chem., Int. Ed. 2001, 40, 1430; (c) Aggarwal, V. K.; Alonso,
E.; Bae, I.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Patel, M.; Porcelloni, M.;
Richardson, J.; Stenson, R. A.; Studley, J. R.; Vasse, J.-L.; Winn, C. L. J. Am. Chem.
Soc. 2003, 125, 10926; (d) Li, A.-H.; Dai, L.-X.; Hou, X.-L.; Huang, Y.-Z.; Li, F.-W. J.
Org. Chem. 1996, 61, 489; (e) Aggarwal, V. K.; Charmant, J. P. H.; Fuentes, D.;
Harvey, J. N.; Hynd, G.; Ohara, D.; Picoul, W.; Robiette, R.; Smith, C.; Vasse, J.-L.;
Winn, C. J. Am. Chem. Soc. 2006, 128, 2105; (f) Deng, X.-M.; Cai, P.; Ye, S.; Sun,
X.-L.; Liao, W.-W.; Li, K.; Tang, Y.; W, Y.-D.; Dai, L.-X. J. Am. Chem. Soc. 2006, 128,
9730; (g) Ye, S.; Huang, Z.-Z.; Xia, C.-A.; Tang, Y.; Dai, L.-X. J. Am. Chem. Soc.
2002, 124, 2432; (h) Huang, K.; Huang, Z.-Z. Synlett 2005, 1621; (i) Aggarwal, V.
K.; Aragoncillo, C.; Winn, C. L. Synthesis 2005, 1378.
0. (a) Zanardi, J.; Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. J. Org. Chem.
1
2001, 66, 5620; (b) Zanardi, J.; Lamazure, D.; Minière, S.; Reboul, V.; Metzner, P.
J. Org. Chem. 2002, 67, 9083; (c) Takada, H.; Metzner, P.; Philouze, C. Chem.
Commun. 2001, 2350; (d) Winn, C. L.; Bellenie, B. R.; Goodman, J. M.
Tetrahedron Lett. 2002, 43, 5427.
Acknowledgment
1
1
1. Sell, T.; Laschat, S.; Dix, I.; Jones, P. G. Eur. J. Org. Chem. 2000, 4119.
2. Gladysz, J. A.; Hornby, J. L.; Garbe, J. E. J. Org. Chem. 1978, 43, 1204.
This research was partially supported by a Grant-in-Aid (No.
0590021) from the Ministry of Education, Culture, Sports, Science
and Technology (Japan).
2
13. (1R,1
0
R,2R,2
0
R,4R,4
0
R)-1,1
0
-(Selenobis(methylene)bis(7,7-dimethylbicyclo[2.2.1]-
heptan-2-ol) (6): To
a
mixture of lithium aluminum hydride (209 mg,
5
.51 mmol) in 6 mL of dry THF a solution of di-10-camphoryl selenide (5)
(
1.50 g, 3.93 mmol) in 39 mL of dry THF was added at 0 °C under Ar in small
References and notes
portions. The mixture was stirred at room temperature overnight. The excess
of hydride was cautiously quenched with water and finally with 15% sodium
hydroxide. The resulting mixture was filtered through a Celite pad and
washed thoroughly with ethyl acetate, and the filtrate was washed with
brine. The ethyl acetate extracts were dried over anhydrous magnesium
sulfate and concentrated under reduced pressure. The residue was purified
1
.
For reviews, see: (a) Rosen, T. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamom: Oxford, 1991; Vol. 2, pp 409–439; (b) Newman, M.
S.; Magerlein, B. J. In Organic Reactions; Adams, R., Ed.; Wiley: New York, 1949;
Vol. 5, p 413.
2
.
(a) Smith, J. G. Synthesis 1984, 629; (b) Berkessel, A.; Gröger, H. In Asymmetric
Organocatalysis; Wliley-VCH: Weinheim, 2005; (c) Yudin, A. K. In Aziridines and
Epoxides in Organic Synthesis; Wliley-VCH: Weinheim, 2006; (d) Xia, Q.-H.; Ge,
H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Chem. Rev. 2005, 105, 1603; (e) McGarrigle,
E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev.
by chromatography on silica gel (benzene/diethyl ether = 10:1) to afford
1
1.33 g (88%) of 6 as a white solid: mp 212–224 °C; H NMR (400 MHz) (CDCl
3
)
d: 0.85 (6H, s, 2CH
(2H, m, 2CH of CH
2CH
3
), 1.01–1.08 (2H, m, 2CH), 1.06 (6H, s, 2CH
), 1.53 (2H, td, J = 12.1, 4.2, 2CH of CH
2
3
), 1.16–1.22
), 1.67–1.82 (8H, m,
), 3.85
2
2
), 2.64 (2H, d, J = 10.5, 2CH of CH
2
), 2.86 (2H, d, J = 10.5, 2CH of CH
2
13
2
007, 107, 5841; (f) Wong, O. A.; Shi, Y. Chem. Rev. 2008, 108, 3958.
(2H, dd, J = 7.9, 3.5, 2CH); C NMR (100 MHz) d: 19.9 (q), 20.6 (q), 25.6 (t),
3
.
(a) Colonna, S.; Fornasier, R.; Pfeiffer, U. J. Chem. Soc., Perkin Trans. 1 1978, 8; (b)
Bakó, P.; Szöllosy, A.; Bombicz, P.; Toke, L. Synlett 1997, 291; (c) Bakó, P.;
Vizvardi, K.; Bajorm, Z.; Tðke, L. Chem. Commun. 1998, 1193; (d) Bakó, P.;
Vizvardi, K.; Toppet, S.; Van der Eycken, E.; Hoornaert, G. J.; Tðke, L. Tetrahedron
27.1 (t), 31.9 (t), 39.3 (t), 45.3 (d), 47.8 (s), 52.7 (s), 77.6 (d); MS (EI) m/z (rel
+
int. %) 386 (M , 5%), 135 (100); HRMS calcd for C20
H
34
O
2
Se: 386.1724. Found:
2
1
386.1727; ½
aꢀ
¼ ꢁ66:7 (c 1.0 in CH
2 2
Cl ).
D
14. (a) De Lucchi, O.; Lucchini, V.; Marchioro, C.; Vallem, G.; Modena, G. J. Org.
Chem. 1986, 51, 1457; (b) Jingen, D.; Yaozhong, J.; Guilan, L.; Lanjun, W.; Aiqiao,
M. Synthesis 1991, 963; (c) Kurose, N.; Takahashi, T.; Koizumi, T. Tetrahedron
1997, 53, 12115.
1
998, 54, 14975; (e) Bakó, P.; Czinege, E.; Bakó, T.; Czugler, M.; Tðke, L.
Tetrahedron: Asymmetry 1999, 10, 4539; (f) Bakó, P.; Makó, A.; Keglevich, G.;
Kubinyi, M.; Pal, K. Tetrahedron: Asymmetry 2005, 16, 1861; (g) Arai, S.; Shioiri,
T. Tetrahedron Lett. 1998, 39, 2145; (h) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T.
Tetrahedron Lett. 1998, 39, 8299; (i) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T.
Chem. Commun. 1999, 49; (j) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Tetrahedron
15. (a) Nemoto, T.; Ohshima, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc.
2001, 123, 2725; (b) Adam, W.; Rao, P. B.; Degen, H.-G.; Saha-Moeller, C. R. J.
Am. Chem. Soc. 2000, 122, 5654.