Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
In combination with the facile preparation of allylic azides from
simple and abundant olefins, this mild and general protocol
provides rapid access to a diverse array of 3-azidopropylsilanes.
These compounds serve as bi-functional handles featuring the
versatile azide and silicon functional groups. Efforts to develop
an asymmetric version of this reaction are currently underway
in our laboratory.
We thank Professor Jeffrey Aubé for helpful discussions and
providing allylic azides S24-3, S25-5, S27-3, and S28-2. This work
was financially supported by the National Natural Science
Foundation of China (No 21472161), the Priority Academic
Program Development of Jiangsu Higher Education Institutions
(No. BK2013016), and Top-notch Academic Programs Project of
Jiangsu Higher Education Institutions (No. PPZY2015B112). We
thank Jing Liang, Yacheng Zhu and Shuai Zhu for synthetic
assistance. The analytical center of Yangzhou University is
acknowledged for analytical assistance.
5135-5138.
7
8
For selected reviews, see: (a) B. MarDcOinIi:e1c0,.10C3o9m/Dp0rCeChe0n13s1i6vAe
Handbook on Hydrosilylation, Pergamon, Amsterdam, 1992;
(b) J. R. Coombs and J. P. Morken, Angew. Chem. Int. Ed., 2016,
55, 2636-2649; (c) X. Du and Z. Huang, ACS Catal., 2017, 7,
1227-1243; (d) J. V. Obligacion and P. J. Chirik, Nat. Rev. Chem.,
2018, 2, 15-34; (e) J. Chen and Z. Lu, Org. Chem. Front., 2018,
5, 260-272; (f) M. Zaranek and P. Pawluc, ACS Catal., 2018, 8,
9865-9876.
For selected examples, see: (a) S. Randl and S. Blechert, J. Org.
Chem., 2003, 68, 8879-8882; (b) C. Douat-Casassus, K. Pulka,
P. Claudon and G. Guichard, Org. Lett., 2012, 14, 3130-3133;
(c) S. Essig, B. Schmalzbauer, S. Bretzke, O. Scherer, A.
Koeberle, O. Werz, R. Müller and D. Menche, J. Org. Chem.,
2016, 81, 1333-1357; (d) J.-B. Qiao, Y.-M. Zhao and P. Gu, Org.
Lett., 2016, 18, 1984-1987; (e) N. D. Spiccia, J. Burnley, K.
Subasinghe, C. Perry, L. Lefort, W. R. Jackson and A. J.
Robinson, J. Org. Chem., 2017, 82, 8725-8732; (f) K. J.
Bruemmer, R. R. Walvoord, T. F. Brewer, G. Burgos-Barragan,
N. Wit, L. B. Pontel, K. J. Patel and C. J. Chang, J. Am. Chem.
Soc., 2017, 139, 5338-5350; (g) R. Liu, H. Ge, K. Chen and H.
Xue, ACS Catal., 2018, 8, 5574-5580.
Conflicts of interest
There are no conflicts to declare.
9
(a) B. Marciniec, Coord. Chem. Rev., 2005, 249, 2374-2390; (b)
D. Troegel and J. Stohrer, Coord. Chem. Rev., 2011, 255, 1440-
1459; (c) Y. Nakajima and S. Shimada, RSC Adv., 2015, 5,
20603-20616.
10 (a) R. A. Benkeser, E. C. Mozdzen, W. C. Muench, R. T. Roche
and M. P. Siklosi, J. Org. Chem., 1979, 44, 1370-1376; (b) J. Zhu,
W.-C. Cui, S. Wang and Z.-J. Yao, J. Org. Chem., 2018, 83,
14600-14609.
11 (a) B. M. Trost, Z. T. Ball and K. M. Laemmerhold, J. Am. Chem.
Soc., 2005, 127, 10028-10038; (b) C. T. Saouma and J. C. Peters,
Coord. Chem. Rev., 2011, 255, 920-937; (c) A. M. Geer, C. Tejel,
J. A. López and M. A. Ciriano, Angew. Chem. Int. Ed., 2014, 53,
5614-5618; (d) Z. Li and W.-L. Duan, Angew. Chem. Int. Ed.,
2018, 57, 16041-16045.
12 (a) M. Köhn and R. Breinbauer, Angew. Chem. Int. Ed., 2004,
43, 3106-3116; (b) F. L. Lin, H. M. Hoyt, H. van Halbeek, R. G.
Bergman and C. R. Bertozzi, J. Am. Chem. Soc., 2005, 127,
2686-2695; (c) D. C. Lenstra, J. J. Wolf and J. Mecinović, J. Org.
Chem., 2019, 84, 6536-6545.
13 (a) B. Cheng, P. Lu, H. Zhang, X. Cheng and Z. Lu, J. Am. Chem.
Soc., 2017, 139, 9439-9442; (b) C. Wang, W. J. Teo and S. Ge,
ACS Catal., 2017, 7, 855-863; (c) B. Cheng, W. Liu and Z. Lu, J.
Am. Chem. Soc., 2018, 140, 5014-5017.
14 For Pt-catalyzed internal hydrosilylation of olefins, see: (a) J. B.
Perales and D. L. Van Vranken, J. Org. Chem., 2001, 66, 7270-
7274; (b) A. Behr, F. Naendrup and D. Obst, Adv. Synth. Catal.,
2002, 344, 1142-1145.
15 (a) I. E. Markó, S. Stérin, O. Buisine, G. Mignani, P. Branlard, B.
Tinant and J.-P. Declercq, Science, 2002, 298, 204-206; (b) G.
Berthon-Gelloz, O. Buisine, J.-F. Brière, G. Michaud, S. Stérin,
G. Mignani, B. Tinant, J.-P. Declercq, D. Chapon and I. E. Markó,
J. Organomet. Chem., 2005, 690, 6156-6168.
Notes and references
1
(a) A. Gagneux, S. Winstein and W. G. Young, J. Am. Chem. Soc.,
1960, 82, 5956-5957; (b) C. A. VanderWerf and V. L. Heasley,
J. Org. Chem., 1966, 31, 3534-3537; (c) A. S. Carlson and J. J.
Topczewski, Org. Biomol. Chem., 2019, 17, 4406-4429.
For recent examples of allylic azide in synthesis, see: (a) M.
Miyashita, T. Mizutani, G. Tadano, Y. Iwata, M. Miyazawa and
K. Tanino, Angew. Chem. Int. Ed., 2005, 44, 5094-5097; (b) D.
Gagnon, S. Lauzon, C. Godbout and C. Spino, Org. Lett., 2005,
7, 4769-4771; (c) H. Takasu, Y. Tsuji, H. Sajiki and K. Hirota,
Tetrahedron, 2005, 61, 11027-11031; (d) F. Klepper, E.-M.
Jahn, V. Hickmann and T. Carell, Angew. Chem. Int. Ed., 2007,
46, 2325-2327; (e) S. Lauzon, F. Tremblay, D. Gagnon, C.
Godbout, C. Chabot, C. Mercier-Shanks, S. Perreault, H.
DeSeve and C. Spino, J. Org. Chem., 2008, 73, 6239-6250; (f)
M. Cakmak, P. Mayer and D. Trauner, Nat. Chem., 2011, 3,
543-545.
2
3
4
For recent mechanistic studies of Weinstein rearrangement,
see: (a) A. A. Ott, M. H. Packard, M. A. Ortuno, A. Johnson, V.
P. Suding, C. J. Cramer and J. J. Topczewski, J. Org. Chem., 2018,
83, 8214-8224; (b) A. A. Ott and J. J. Topczewski, Org. Lett.,
2018, 20, 7253-7256.
(a) D. Craig, J. W. Harvey, A. G. O'Brien and A. J. P. White, Org.
Biomol. Chem., 2011, 9, 7057-7061; (b) R. Liu, O. Gutierrez, D.
J. Tantillo and J. Aubé, J. Am. Chem. Soc., 2012, 134, 6528-
6531; (c) R. H. Vekariya, R. Liu and J. Aubé, Org. Lett., 2014,
16, 1844-1847; (d) L. Moynihan, R. Chadda, P. McArdle and P.
V. Murphy, Org. Lett., 2015, 17, 6226-6229; (e) R. Chadda, P.
McArdle and P. V. Murphy, Synthesis, 2017, 49, 2138-2152; (f)
M. R. Porter, R. M. Shaker, C. Calcanas and J. J. Topczewski, J.
Am. Chem. Soc., 2018, 140, 1211-1214.
16 C. J. Kong, S. E. Gilliland, B. R. Clark and B. F. Gupton, Chem.
Commun., 2018, 54, 13343-13346.
17 (a) J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302-
1315; (b) J. R. Johansson, T. Beke-Somfai, A. Said Staalsmeden
and N. Kann, Chem. Rev., 2016, 116, 14726-14768.
18 (a) J. Aubé and G. L. Milligan, J. Am. Chem. Soc., 1991, 113,
8965-8966; (b) J. G. Badiang and J. Aubé, J. Org. Chem., 1996,
61, 2484-2487; (c) G. R. Jones and Y. Landais, Tetrahedron,
1996, 52, 7599-7662.
5
6
(a) A. K. Feldman, B. Colasson, K. B. Sharpless and V. V. Fokin,
J. Am. Chem. Soc., 2005, 127, 13444-13445; (b) A. S. Carlson,
C. Calcanas, R. M. Brunner and J. J. Topczewski, Org. Lett.,
2018, 20, 1604-1607.
Recently, the dihydroxylation and copper-catalyzed AAC were
utilized by Topczewski to achieve dynamic kinetic resolution
of inter-converting cyclic allylic azides, but the regio-
selectivity was not applied. See: (a) A. A. Ott, C. S. Goshey and
J. J. Topczewski, J. Am. Chem. Soc., 2017, 139, 7737-7740; (b)
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins