362
Zhi-Feng Jiao et al. / Chinese Journal of Catalysis 41 (2020) 357–363
Graphical Abstract
Chin. J. Catal., 2020, 41: 357–363 doi: S1872-2067(19)63449-2
Photocatalytic C–X borylation of aryl halides by hierarchical SiC
nanowire-supported Pd nanoparticles
Zhi-Feng Jiao, Ji-Xiao Zhao, Xiao-Ning Guo *, Xiang-Yun Guo *
Institute of Coal Chemistry, Chinese Academy of Sciences, China;
Julius-Maximilians-Universität Würzburg, Germany;
Changzhou University, China; University of Chinese Academy of Sciences, China
Hierarchical SiC nanowire-supported Pd nanoparticles showed high photo-
catalytic activity for the C–X (X = Br, I) borylation of aryl halides at 30 °C, due to
the rapid transfer of photogenerated electrons from SiC to Pd through their
Mott-Schottky contact.
[24] R. D. Grigg, R. Van Hoveln, J. M. Schomaker, J. Am. Chem. Soc., 2012,
134, 16131–16134.
References
[25] Y. Nagashima, R. Takita, K. Yoshida, K. Hirano, M. Uchiyama, J. Am.
Chem. Soc., 2013, 135, 18730–18733.
[1] Boronic Acids: Preparation and Applications in Organic Synthesis
and Medicine, D. Hall, Wiley-VCH, Weinheim, 2005.
[2] I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hart-
wig, Chem. Rev., 2010, 110, 890–931.
[3] J. F. Harwig, Chem. Soc. Rev., 2011, 40, 1992–2002.
[4] A. Ros, R. Fernández, J. M. Lassaletta, Chem. Soc. Rev., 2014, 43,
3229–3243.
[5] E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, R. B. Marder,
Chem. Rev., 2016, 116, 9091–9161.
[6] L. Wang, W. Sun, C. Liu, Chin. J. Catal., 2018, 39, 1725–1729.
[7] E. Khotinsky, M. Melamed, Ber. Dtsch. Chem. Ges., 1909, 42,
3090–3096.
[8] F. R. Bean, J. R. Johnson, J. Am. Chem. Soc., 1932, 54, 4415–4425.
[9] R. L. Letsinger, I. H. Skoog, J. Org. Chem., 1953, 18, 895–897.
[10] H. C. Brown, G. W. Kramer, A. B. Levy, M. M. Midland ed., Organic
Syntheses via Boranes, Wiley, New York, 1975.
[11] T. Ishiyama, N. Miyaura, J. Organomet. Chem., 2003, 680, 3–11.
[12] N. Miyaura, Bull. Chem. Soc. Jpn., 2008, 81, 1535–1553.
[13] J. F. Hartwig, Acc. Chem. Res., 2012, 45, 864–873.
[14] R. D. Dewhurst, E. C. Neeve, H. Braunschweig, T. B. Marder, Chem.
Commun., 2015, 51, 9594–9607.
[26] S. K. Bose, T. B. Marder, Org. Lett., 2014, 16, 4562–4565.
[27] S. K. Bose, A. Deißenberger, A. Eichhorn, P. G. Steel, Z. Lin, T. B.
Marder, Angew. Chem. Int. Ed., 2015, 54, 11843–11847.
[28] L. Zhang, L. Jiao, J. Am. Chem. Soc., 2017, 139, 607–610.
[29] J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. Mac-
Millan, Nat. Rev. Chem., 2017, 1, 0052.
[30] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev., 2013, 113,
5322–5363.
[31] J. R. Chen, X. Q. Hu, L. Q. Lu, W. J. Xiao, Acc. Chem. Res., 2016, 49,
1911–1923.
[32] H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei,
Chem. Rev., 2017, 117, 9016–9085.
[33] J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40,
102–113.
[34] X. Lang, J. Zhao, X. Chen, Chem. Soc. Rev., 2016, 45, 3026–3038.
[35] A. M. Mfuh, J. D. Doyle, B. Chhetri, H. D. Arman, O. V. Larionov, J.
Am. Chem. Soc., 2016, 138, 2985–2988.
[36] A. M. Mfuh, V. T. Nguyen, B. Chhetri, J. E. Burch, J. D. Doyle, V. N.
Nesterov, H. D. Arman, O. V. Larionov, J. Am. Chem. Soc., 2016, 138,
8408–8411.
[37] A. M. Mfuh, B. D. Schneider, W. Cruces, O. V. Larionov, Nat. Protoc.,
2017, 12, 604–610.
[15] W. K. Chow, O. Y. Yuen, P. Y. Choy, C. M. So, C. P. Lau, W. T. Wong, F.
Y. Kwong, RSC Adv., 2013, 3, 12518–12539.
[38] J. Yu, L. Zhang, G. Yan, Adv. Synth. Catal., 2012, 354, 2625–2628.
[39] S. Ahammed, S. Nandi, D. Kundu, B. C. Ranu, Tetrahedron Lett.,
2016, 57, 1551–1554.
[40] M. Jiang, H. Yang, H. Fu, Org. Lett., 2016, 18, 5248–5251.
[41] L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc., 2017, 139,
7440–7443.
[42] Y. M. Tian, X. N. Guo, M. W. Kuntze-Fechner, I. Krummenacher, H.
Braunschweig, U. Radius, A. Steffen, T. B. Marder, J. Am. Chem. Soc.,
2018, 140, 17612–17623.
[43] Y. Zhu, K. Chenyan, A. T. Peng, A. Emi, W. Monalisa, L. K.-J. Louis, N.
S. Hosmane, J. A. Maguire, Inorg. Chem., 2008, 47, 5756–5761.
[44] G. Yan, Y. Jiang, C. Kuang, S. Wang, H. Liu, Y. Zhang, J. Wang, Chem.
Commun., 2010, 46, 3170–3172.
[16] T. C. Atack, R. M. Lecker, S. P. Cook, J. Am. Chem. Soc., 2014, 136,
9521–9523.
[17] R. B. Bedford, Acc. Chem. Res., 2015, 48, 1485–1493.
[18] C. Dai, G. Stringer, J. F. Corrigan, N. J. Taylor, T. B. Marder, N. C.
Norman, J. Organomet. Chem., 1996, 513, 273–275.
[19] R. Frank, J. Howell, J. Campos, R. Tirfoin, N. Phillips, S. Zahn, D. M.
P. Mingos, S. Aldridge, Angew. Chem. Int. Ed., 2015, 54,
9586–9590.
[20] P. K. Verma, S. Mandal, K. Geetharani, ACS Catal., 2018, 8,
4049–4054.
[21] X. W. Liu, J. Echavarren, C. Zarate, R. Martin, J. Am. Chem. Soc.,
2015, 137, 12470–12473.
[22] T. Niwa, H. Ochiai, Y. Watanabe, T. Hosoya, J. Am. Chem. Soc., 2015,
137, 14313–14318.
[23] J. Zhou, M. W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J. H. J.
Berthel, A. Friedrich, Z. Du, T. B. Marder, U. Radius, J. Am. Chem.
Soc., 2016, 138, 5250–5253.
[45] O. Pascu, L. Marciasini, S. Marre, M. Vaultier, M. Pucheault, C. Ay-
monier, Nanoscale, 2013, 5, 12425–12431.
[46] S. Zhang, H. Wang, M. Li, J. Han, X. Liu, J. Gong, Chem. Sci., 2017, 8,
4489–4496.
[47] Z. Lin, N. C. Thacker, T. Sawano, T. Drake, P. Ji, G. Lan, L. Cao, S. Liu,