Organic Letters
Letter
o f S c i e n c e , I C T a n d F u t u r e P l a n n i n g )
(2014R1A2A1A11053477 and 2009-0083533) and the HHMI
International Early Career Scientist Program.
REFERENCES
■
(1) Ramadhar, T. R.; Beemelmanns, C.; Currie, C. R.; Clardy, J. J.
Antibiot. 2014, 67, 53−58.
(2) Scott, J. J.; Oh, D.-C.; Yuceer, M. C.; Klepzig, K. D.; Clardy, J.;
Currie, C. R. Science 2008, 322, 63.
(3) Oh, D.-C.; Poulsen, M.; Currie, C. R.; Clardy, J. Nat. Chem. Biol.
2009, 5, 391−393.
Figure 4. Effects of (a) coprisamide A and (b) coprisamide B on the
induction of quinone reductase in murine Hepa-1c1c7 cells. Cells were
cultured for 24 h and then exposed to coprisamide A or B for 24 h.
Quinone reductase activities in the cell lysates were measured by
reduction of a tetrazolium dye and expressed as nmol/min/mg
protein. β-NF (β-naphthoflavone) was used as a positive control (*P <
0.001).
(4) Berenbaum, M. R.; Eisner, T. Science 2008, 322, 52−53.
(5) Park, S.-H.; Moon, K.; Bang, H.-S.; Kim, S.-H.; Kim, D.-G.; Oh,
K.-B.; Shin, J.; Oh, D.-C. Org. Lett. 2012, 14, 1258−1261.
(6) Kim, S.-H.; Kwon, S. H.; Park, S.-H.; Lee, J. K.; Bang, H.-S.; Nam,
S.-J.; Kwon, H. C.; Shin, J.; Oh, D.-C. Org. Lett. 2013, 15, 1834−1837.
(7) Um, S.; Bang, H.-S.; Shin, J.; Oh, D.-C. Nat. Prod. Sci. 2013, 19,
71−75.
(8) Kim, S.-H.; Ko, H.; Bang, H.-S.; Park, S.-H.; Kim, D.-G.; Kwon,
H. C.; Kim, S. Y.; Shin, J.; Oh, D.-C. Bioorg. Med. Chem. Lett. 2011, 21,
5715−5718.
(9) Engel, P.; Moran, N. A. FEMS Microbiol. Rev. 2013, 37, 699−735.
(10) Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K. Anal. Chem.
1997, 69, 5146−5151.
The structures of the coprisamides are unique in several
aspects. First, the amino acid sequence incorporating mostly
the unusual amino acids S-β-methyl-L-Asp and S-Dpr as well as
D-Leu, D-Ser, and D-Ala is unprecedented among the numerous
reported nonribosomal peptides.14 In particular, β-methyl-L-
Asp is infrequently encountered, with the rare examples of the
friulimicin class of peptides15 and the skyllamycins.16 The
branched feature of 1 and 2 at Dpr extended to Val-2 is also
unique in nature. Moreover, the acyl chain, which is composed
of a 2-heptatrienyl cinnamic acid (HTCA), has not been
previously reported. Such 2-alkenyl cinnamic acids are
extremely rare. Based on our exhaustive literature search, only
four classes of natural products bearing a 2-alkenyl cinnamic
acid have been reported. WS9326s, the mohangamides, and the
pepticinnamins incorporate a 2-pentenyl cinnamic acid,17
whereas the skyllamycins possess a 2-propenyl cinnamic
acid.16 Based on the study of skyllamycin biosynthesis,18 the
HTCA unit could be biosynthesized from the putative
precursor C16-polyene by an enzymatic 6π-electrocyclization
(see Supporting Information Figure S18).
The coprisamides are the first secondary metabolites to be
isolated from insect gut symbionts. Insect gut microbiota are
likely determined by the environmental habitat, diet, devel-
opmental stage, and phylogeny of the host, resulting in the
tremendous biodiversity of insect gut-associated microbes.19
Our discovery of the coprisamides from a dung beetle gut
symbiont signifies the huge chemical potential of insect
microbiota for bioactive small molecules.
(11) Yabuuchi, T.; Kusumi, T. J. Org. Chem. 2000, 65, 397−404.
(12) Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.;
Tachibana, K. J. Org. Chem. 1999, 64, 866−876.
(13) De Long, M. J.; Prochaska, H. J.; Talalay, P. Proc. Natl. Acad. Sci.
U.S.A. 1985, 82, 8232−8236.
(14) Caboche, S.; Pupin, M.; Lecler
Kucherov, G. Nucleic Acids Res. 2008, 35, D326−D331.
(15) Vertesy, L.; Ehlers, E.; Kogler, H.; Kurz, M.; Meiwes, J.; Seibert,
̀
e, V.; Fontaine, A.; Jacques, P.;
́
G.; Vogel, M.; Hammann, P. J. Antibiot. 2000, 53, 816−827.
(16) Toki, S.; Agatsuma, T.; Ochiai, K.; Saitoh, Y.; Ando, K.;
Nakanishi, S.; Lokker, N. A.; Giese, N. A.; Matsuda, Y. J. Antibiot.
2001, 54, 405−414.
(17) (a) Hayashi, K.; Hashimoto, M.; Shigematsu, N.; Nishikawa, M.;
Ezaki, M.; Yamashita, M.; Kiyoto, S.; Okuhara, M.; Kohsaka, M.;
Imanaka, H. J. Antibiot. 1992, 45, 1055−1063. (b) Bae, M.; Kim, H.;
Moon, K.; Nam, S.-J.; Shin, J.; Oh, K.-B.; Oh, D.-C. Org. Lett. 2015, 17,
712−715. (c) Shiomi, K.; Yang, H.; Inokoshi, J.; Van Der Pyl, D.;
Nakagawa, A.; Takeshima, H.; Omura, S. J. Antibiot. 1993, 46, 229−
234.
(18) Pohle, S.; Appelt, C.; Roux, M.; Fiedler, H.-P.; Suessmuth, R. D.
J. Am. Chem. Soc. 2011, 133, 6194−6205.
(19) Yun, J.-H.; Roh, S. W.; Whon, T. W.; Jung, M.-J.; Kim, M.-S.;
Park, D.-S.; Yoon, C.; Nam, Y.-D; Kim, Y.-J.; Choi, J.-H.; Kim, J.-Y.;
Shin, N.-R.; Kim, S.-H.; Lee, W.-J.; Bae, J.-W. Appl. Environ. Microbiol.
2014, 80, 5254−5264.
ASSOCIATED CONTENT
* Supporting Information
■
S
The detailed experimental procedures and NMR data for
compounds 1 and 2. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Research Foundation
of Korea Grants funded by the Korean Government (Ministry
■
D
Org. Lett. XXXX, XXX, XXX−XXX