Communications
Reetz, in Methods in Molecular Biology, Vol. 230 (Eds.: F. H.
Kato, H. Nakano, T. Yamane, J. Mol. Biol. 2003, 331, 585 – 592;
e) J. A. Wells, M. Vasser, D. B. Powers, Gene 1985, 34, 315 – 323;
f) J. D. Stevenson, S. J. Benkovic, J. Chem. Soc. Perkin Trans. 2
2002, 1483 – 1493; g) M. Wilming, A. Iffland, P. Tafelmeyer, C.
Arrivoli, C. Saudan, K. Johnsson, ChemBioChem 2002, 3, 1097 –
1104; h) A. Juillerat, T. Gronemeyer, A. Keppler, S. Gendreizig,
H. Pick, H. Vogel, K. Johnsson, Chem. Biol. 2003, 10, 313 – 317;
i) L. B. Evnin, J. R. Vµsquez, C. S. Craik, Proc. Natl. Acad. Sci.
USA 1990, 87, 6659 – 6663; j) A. R. Schmitzer, F. LØpine, J. N.
Pelletier, Protein Eng. Des. Sel. 2004, 17, 809 – 819; k) J. Yang, Y.
Koga, H. Nakano, T. Yamane, Protein Eng. 2002, 15, 147 – 152;
l) M. S. Warren, S. J. Benkovic, Protein Eng. 1997, 10, 63 – 68;
m) T. Yano, S. Oue, H. Kagamiyana, Proc. Natl. Acad. Sci. USA
1998, 95, 5511 – 5515; n) E. M. Gabor, D. B. Janssen, Protein
Eng. Des. Sel. 2004, 17, 571 – 579; o) D. K. Dube, L. A. Loeb,
Biochemistry 1989, 28, 5703 – 5707.
Arnold, D. Georgiou), Humana Press, Totowa, NJ, 2003,
pp. 259 – 282; e) M. T. Reetz, in Methods in Molecular Biology,
Vol. 230 (Eds.: F. H. Arnold, G. Georgiou), Humana Press,
Totowa, NJ, 2003, pp. 283 – 290; f) D. Wahler, J.-L. Reymond,
Curr. Opin. Biotechnol. 2001, 12, 535 – 544.
[
5] a) M. T. Reetz, A. Zonta, K. Schimossek, K. Liebeton, K.-E.
Jaeger, Angew. Chem. 1997, 109, 2961 – 2963; Angew. Chem. Int.
Ed. Engl. 1997, 36, 2830 – 2832; b) K. Liebeton, A. Zonta, K.
Schimossek, M. Nardini, D. Lang, B. W. Dijkstra, M. T. Reetz,
K.-E. Jaeger, Chem. Biol. 2000, 7, 709 – 718; c) M. T. Reetz, S.
Wilensek, D. Zha, K.-E. Jaeger, Angew. Chem. 2001, 113, 3701 –
3703; Angew. Chem. Int. Ed. 2001, 40, 3589 – 3591; d) D. Zha, S.
Wilensek, M. Hermes, K.-E. Jaeger, M. T. Reetz, Chem.
Commun. 2001, 2664 – 2665.
[
[
6] a) M. T. Reetz, B. Brunner, T. Schneider, F. Schulz, C. M.
Clouthier, M. M. Kayser, Angew. Chem. 2004, 116, 4167 – 4170;
Angew. Chem. Int. Ed. 2004, 43, 4075 – 4078; b) M. T. Reetz, F.
Daligault, B. Brunner, H. Hinrichs, A. Deege, Angew. Chem.
[12] S. A. Funke, A. Eipper, M. T. Reetz, N. Otte, W. Thiel, G.
van Pouderoyen, B. W. Dijkstra, K.-E. Jaeger, T. Eggert, Bio-
catal. Biotransform. 2003, 21, 67 – 73.
2
004, 116, 4170 – 4173; Angew. Chem. Int. Ed. 2004, 43, 4078 –
[13] G. DeSantis, K. Wong, B. Farwell, K. Chatman, Z. Zhu, G.
Tomlinson, H. Huang, X. Tan, L. Bibbs, P. Chen, K. Kretz, M. J.
Burk, J. Am. Chem. Soc. 2003, 125, 11476 – 11477.
[14] a) G. P. Horsman, A. M. F. Liu, E. Henke, U. T. Bornscheuer,
R. J. Kazlauskas, Chem. Eur. J. 2003, 9, 1933 – 1939; b) S. Park,
K. L. Morley, G. P. Horsman, M. Holmquist, K. Hult, R. J.
Kazlauskas, Chem. Biol. 2005, 12, 45 – 54; c) R. Kazlauskas,
Chem. Listy 2003, 67, 329 – 337.
4081.
7] a) M. T. Reetz, C. Torre, A. Eipper, R. Lohmer, M. Hermes, B.
Brunner, A. Maichele, M. Bocola, M. Arand, A. Cronin, Y.
Genzel, A. Archelas, R. Furstoss, Org. Lett. 2004, 6, 177 – 180;
For an improved expression system of ANEH in E. coli, see:
b) F. Cedrone, S. Niel, S. Roca, T. Bhatnagar, N. Ait-Abdelkader,
C. Torre, H. Krumm, A. Maichele, M. T. Reetz, J. C. Baratti,
Biocatal. Biotransform. 2003, 21, 357 – 364.
8] For further examples of enhanced enantioselectivity (evolu-
tionary process was not involved in all cases), see: a) Amino-
transferases: G. W. Matcham, A. R. S. Bowen, Chim. Oggi 1996,
[15] S. Lutz, W. M. Patrick, Curr. Opin. Biotechnol. 2004, 15, 291 –
297.
[
[16] M. T. Reetz, M. Bocola, J. D. Carballeira, D. Zha, A. Vogel,
Angew. Chem. 2005, 117, 4264 – 4268; Angew. Chem. Int. Ed.
2005, 44, 4192 – 4196.
1
4, 20 – 24; b) Esterases: U. T. Bornscheuer, J. Altenbuchner,
[
14]
H. H. Meyer, Biotechnol. Bioeng. 1998, 58, 554 – 559; c) Hydan-
toinases: O. May, P. T. Nguyen, F. H. Arnold, Nat. Biotechnol.
2
speed, M. A. Sogorb, F. Wu, S.-B. Hong, F. M. Raushel,
Biochemistry 2001, 40, 1325 – 1331; e) M. Chen-Goodspeed,
M. A. Sogorb, F. Wu, F. M. Raushel, Biochemistry 2001, 40,
[17] For examples of remote effects, see: a) M. Bocola, N. Otte, K.-
E. Jaeger, M. T. Reetz, W. Thiel, ChemBioChem 2004, 5, 214 –
223; b) S. Oue, A. Okamoto, T. Yano, H. Kagamiyama, J. Biol.
Chem. 1999, 274, 2344 – 2349; c) A. Iffland, P. Tafelmeyer, C.
Saudan, J. Johnsson, Biochemistry 2000, 39, 10790 – 10798; d) M.
Kumar, K. K. Kannan, M. V. Hosur, N. S. Bhavesh, A. Chatter-
jee, R. Mittal, R. V. Hosur, Biochem. Biophys. Res. Commun.
2002, 294, 395 – 401; e) P. K. Agarwal, S. R. Billeter, P. T. R.
Rajagopalan, S. J. Benkovic, S. Hammes-Schiffer, Proc. Natl.
Acad. Sci. USA 2002, 99, 2794 – 2799; f) H. Zhao, F. H. Arnold,
Protein Eng. 1999, 12, 47 – 53; g) L. K. Jackson, J. Baldwin, R.
Akella, E. J. Goldsmith, M. A. Phillips, Biochemistry 2004, 43,
12990 – 12999; h) B. Lingen, D. Kolter-Jung, P. Dünkelmann, R.
Feldmann, J. Grötzinger, M. Pohl, M. Müller, ChemBioChem
2003, 4, 721 – 726; i) S. McQ. Gould, D. S. Tawfik, Biochemistry
2005, 44, 5444 – 5452; j) V. G. H. Eijsink, S. Gåseidnes, T. V.
Borchert, B. van den Burg, Biomol. Eng. 2005, 22, 21 – 30.
[18] a) C. Morisseau, A. Archelas, C. Guitton, D. Faucher, R.
Furstoss, J. C. Baratti, Eur. J. Biochem. 1999, 263, 386 – 395;
b) K. M. Manoj, A. Archelas, J. C. Baratti, R. Furstoss, Tetrahe-
dron 2001, 57, 695 – 701; c) M. Arand, H. Hemmer, H. Dürk, J.
Baratti, A. Archelas, R. Furstoss, F. Oesch, Biochem. J. 1999,
344, 273 – 280.
000, 18, 317 – 320; d) Phosphotriesterases: M. Chen-Good-
1
332 – 1339; f) Monoamine oxidases: M. Alexeeva, A. Enright,
M. J. Dawson, M. Mahmoudian, N. J. Turner, Angew. Chem.
2
3
Mol. Biol. 2003, 331, 585 – 592; h) Aldolases: M. Wada, C.-C.
Hsu, D. Franke, M. Mitchell, A. Heine, I. Wilson, C.-H. Wong,
Bioorg. Med. Chem. 2003, 11, 2091 – 2098; i) Epoxide hydro-
lases: B. van Loo, J. H. L. Spelberg, J. Kingma, T. Sonke, M. G.
Wubbolts, D. B. Janssen, Chem. Biol. 2004, 11, 981 – 990; j) L.
Rui, L. Cao, W. Chen, K. F. Reardon, T. K. Wood, Appl.
Environ. Microbiol 2005, 71, 3995 – 4003.
002, 114, 3309 – 3312; Angew. Chem. Int. Ed. 2002, 41, 3177 –
180; g) Lipases: Y. Koga, K. Kato, H. Nakano, T. Yamane, J.
[
9] a) D. W. Leung, E. Chen, D. V. Goeddel, Technique 1989, 1, 11 –
1
2
5; b) R. C. Cadwell, G. F. Joyce, PCR Methods Appl. 1992, 2,
8 – 33; c) T. Eggert, M. T. Reetz, K.-E. Jaeger, in Enzyme
Functionality—Design, Engineering, and Screening (Ed.: A.
Svendsen), Marcel Dekker, New York, 2004, pp. 375 – 390;
d) For an illuminating study concerning high-error-rate
epPCR, see: D. A. Drummond, B. L. Iverson, G. Georgiou,
F. H. Arnold, J. Mol. Biol. 2005, 350, 806 – 816.
[19] For reviews of epoxide hydrolases, see: a) K. Faber, R. V. A.
Orru in Enzyme Catalysis in Organic Synthesis (Eds.: K. Drauz,
H. Waldmann), Wiley-VCH, Weinheim, 2002, pp. 579 – 608;
b) C. Morisseau, B. D. Hammock, Annu. Rev. Pharmacol.
Toxicol. 2005, 45, 311 – 333; c) A. Archelas, R. Furstoss, Curr.
Opin. Chem. Biol. 2001, 5, 112 – 119.
[
10] For a review of DNA shuffling, see: K. A. Powell, S. W. Ramer,
S. B. del CardayrØ, W. P. C. Stemmer, M. B. Tobin, P. F. Long-
champ, G. W. Huisman, Angew. Chem. 2001, 113, 4068 – 4080;
Angew. Chem. Int. Ed. 2001, 40, 3948 – 3959.
[
11] For examples of focused libraries, see: references [2,5c,12–15]
and a) S. V. Taylor, P. Kast, D. Hilvert, Angew. Chem. 2001, 113,
[20] For other important work on the directed evolution of enantio-
selective epoxide hydrolases, see references [8i,j].
3
408 – 3436; Angew. Chem. Int. Ed. 2001, 40, 3310 – 3335; b) H.
[21] a) M. T. Reetz, M. H. Becker, H.-W. Klein, D. Stöckigt, Angew.
Chem. 1999, 111, 1872 – 1875; Angew. Chem. Int. Ed. 1999, 38,
1758 – 1761; W. Schrader, A. Eipper, D. J. Pugh, M. T. Reetz,
Can. J. Chem. 2002, 80, 626 – 632.
Xiong, B. L. Buckwalter, H. M. Shieh, M. H. Hecht, Proc. Natl.
Acad. Sci. USA 1995, 92, 6349 – 6353; c) J. U. Bowie, R. T. Sauer,
Proc. Natl. Acad. Sci. USA 1989, 86, 2152 – 2156; d) Y. Koga, K.
1
240
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 1236 –1241