10.1002/chem.201704626
Chemistry - A European Journal
FULL PAPER
Semproni, S. DeBeer, P. J. Chirik, Chem. Sci. 2014, 5, 1168–1174; g) C.
C. Comanescu, M. Vyushkova, V. M. Iluc, Chem. Sci., 2015, 6, 4570–
4579; h) D. A. Sharon, D. Mallick, B. Wang S. Shaik, J. Am. Chem. Soc.
2016, 138, 9597–9610.
To the best of our knowledge, this is the first example of a
cobalt(III)-carbene radical mediated CH activation/rebound
mechanism for the synthesis of N-heterocyclic organic products.
The metallo-radical catalysed indoline synthesis in this work
represents an example of a formal intramolecular carbene
insertion reaction into a benzylic CH bond, but proceeds via a
radical mechanism and displays highly controlled reactivity of the
key CoIII-carbene radical intermediates involved.
[3]
For 1,2-addition across olefins, see: a) M. P. Doyle, Angew. Chem. Int.
Ed. 2009, 48, 850–852; b) S. F. Zhu, J. V. Ruppel, H. J. Lu, L. Wojtas, X.
P. Zhang, J. Am. Chem. Soc. 2008, 130, 5042–5043; c) S. F. Zhu, J. A.
Perman, X. P. Zhang, Angew. Chem. Int. Ed. 2008, 47, 8460–8463; d) S.
Fantauzzi, E. Gallo, E. Rose, N. Raoul, A. Caselli, S. Issa, F. Ragaini, S.
Cenini, Organometallics 2008, 27, 6143–6151; e) X. Xu, S. Zhu, X. Cui,
L. Wojtas, X. P. Zhang, Angew. Chem. Int. Ed. 2013, 52, 11857–11861;
f) J. Zhang, J. Jiang, D. Xu, Q. Luo, H. Wang, J. Chen, H. Li, Y. Wang,
X. Wan, Angew. Chem. Int. Ed. 2015, 54, 1231–1235; g) N. D. Paul, S.
Mandal, M. Otte, X. Cui, X. P. Zhang, B. de Bruin, J. Am. Chem. Soc.
2014, 136, 1090–1096.
Experimental Section
[4]
[5]
B. G. Das, A. Chirila, M. Tromp, J. N. H. Reek, B. de Bruin, J. Am. Chem.
Soc. 2016, 138, 8968–8975.
General Procedure for Indoline Formation: To a flame dried
schlenk tube was added substrate (0.300 mmol) followed by the
[Co(TPP)] (10 mg, 0.015 mmol, 5.0 mol%). The schlenk tube was
evacuated and back-filled with nitrogen three times, and
evacuated prior to transfer to a glove box. Once inside a glove
box, the reaction flask was slowly filled with nitrogen, and lithium
tert-butoxide (40.8 mg, 0.510 mmol, 1.7 equiv.) was added. The
solids were dissolved in 6 mL of benzene and the reaction flask
was removed from the glove box and transferred to an oil bath
preheated to 60 °C. After 18 hours, the reaction mixture was
cooled to room temperature, opened to air, and 6 mL of water was
added in a single portion. The water layer was extracted 3 times
with hexanes (3 6 mL). The organic portions were dried over
MgSO4, filtered through cotton, and concentrated in vacuo. The
crude residue was then purified via silica gel chromatography to
provide the pure indoline product.
a) H. Lu, K. Lang, H. Jiang, L. Wojtas, X. P. Zhang, Chem. Sci. 2016, 7,
6934–6939; b) J. R. Griffin, C. I. Wendell, J. A. Garwin, C. M. White, J.
Am. Chem. Soc. DOI: 10.1021/jacs.7b07602.
[6]
For methods for free indoline formation, see: a) B. E. Maryanoff, D. F.
McComsey, S. O. Nortey, J. Org. Chem. 1981, 46, 355–360; b) H.
Kotsuki, Y. Ushio, M. Ochi, Heterocycles 1987, 26, 1771–1774; c) G.
Lunn, J. Org. Chem. 1987, 52, 1043–1046; d) A. Srikrishna, T. J. Reddy,
R. Viswajanani, Tetrahedron 1996, 52, 1631–1636; e) A. M. Voutchkova,
D. Gnanamgari, C. E. Jakobsche, C. Butler, S. J. Miller, J. Parr, R. H.
Crabtree, J. Organomet. Chem. 2008, 693, 1815–1821; f) M. Tan, Y.
Zhang, Tetrahedron Lett. 2009, 50, 4912–4915; g) A. Kulkarni, W. Zhou,
B. Török, Org. Lett. 2011, 13, 5124–5127; h) J. Wu, J. H. Barnard, Y.
Zhang, D. Talwar, C. M. Robertson, J. Xiao, Chem. Commun. 2013, 49,
7052–7054; i) F. Chen, A.–E. Surkus, L. He, M.–M. Pohl, J. Radnik, C.
Topf, K. Junge, M. Beller, J. Am. Chem. Soc. 2015, 137, 11718–11724;
j) D. Talwar, H. Y. Li, E. Durham, J. Xiao, Chem.–Eur. J. 2015, 21, 5370–
5379.
[7]
[8]
[9]
For methods for Boc–protected indoline formation, see: a) D. Clarisse,
B. Fenet, F. Fache, Org. Biomol. Chem. 2012, 10, 6587–6594; b) C.
Srivari, D. Basu, C. R. Reddy, Synthesis 2007, 10, 1509–1512; c) R.
Kuwano, K. Sato, Y. Ito, Chem. Lett. 2000, 4, 428–429.
See supporting Information for further procedures and
characerisation data.
For palladium–catalyzed aryl–nitrogen couplings, see: a) A. S. Guram, R.
A. Rennels, S. L. Buchwald, Angew. Chem. Int. Ed. 1995, 34, 1348–
1350; b) J. P. Wolfe, R. A. Rennels, S. L. Buchwald, Tetrahedron, 1996,
52, 7525–7546.
Acknowledgements
A.S.K. would like to thank the NSF GROW fellowship (DGE-
1321846) for financial support, as well as Prof. Chris Vanderwal
for supporting his request to gain experience abroad. M.G and
BdB thank the Netherlands Organization for Scientific Research
(NWO-CW VICI grant 016.122.613, BdB) and the University of
Amsterdam (RPA Sustainable Chemistry) for financial support.
For palladium–catalyzed aryl–carbon couplings, see: T. Watanabe, S.
Oishi, N. Fujii, H. Ohno, Org. Lett. 2008, 10, 1759–1762.
[10] For copper–catalyzed aryl–nitrogen couplings: a) A. Klapars, X. Huang,
S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 7421–7428; b) K. Yamada,
T. Kubo, H. Tokuyama, T. Fukuyama, Synlett. 2002, 2, 231–234.
[11] For an aryl–N/C–N coupling cascade, see: A. Minatti, S. L. Buchwald,
Org. Lett. 2008, 10, 2721–2724.
[12] R. Omar–Amrani, A. Thomas, E. Brenner, R. Schneider, Y. Fort, Org.
Lett. 2003, 5, 2311–2314.
Keywords: Cobalt • Metalloradical • 1,5-HAT • Carbene Radical
• Indolines
[13] (a) P. Wipf, J. P. Maciejewski, Org. Lett., 2008, 10, 4383–4386. (b) A.
Gansäuer, M. Behlendorf, D. von Laufenberg, A. Fleckhaus, C. Kube, D.
V. Sadasivam, R. A. Flowers II, Angew. Chem. Int. Ed. 2013, 51, 2012,
4739–4742. (c) A. Gansäuer, D. von Laufenberg, C. Kube, T. Dahmen,
A. Michelmann, M. Behlendorf, R. Sure, M. Seddiqzai, S. Grimme, D. V.
Sadasivam, G. D. Fianu, R. A. Flowers II, Chem Eur. J. 2015, 21, 280–
289.
References
[1]
F. A. Carey, R. J. Sundberg in Advanced Organic Chemistry, Part B:
Reactions and Synthesis, Fifth Edition, Springer Science + Business
Media, LLC, 2007, Chapter 10.
[14] Y. Zhao, M. Xu, Z. Zheng, Y. Yuan, Y. Li, Chem. Commun. 2017, 53,
3721–3724.
[15] a) H. Fuwa, M. Sasaki, Org. Lett. 2007, 9, 3347–3350; b) D. L. J. Clive,
J. Peng, S. P. Fletcher, V. E. Ziffle, D. Wingert, J. Org. Chem. 2008, 73,
2330–2344; c) R. Viswanathan, C. R. Smith, E. N. Prabhakaran, J. N.
Johnston, J. Org. Chem. 2008, 73, 3040–3046.
[2]
a) W. I. Dzik, X. Xu, P. X. Zhang, J. N. H. Reek, B. de Bruin, J. Am. Chem.
Soc. 2010, 132, 10891–10902; b) H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B.
de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518–8521; c) W.
I. Dzik, X. P. Zhang, B. de Bruin, Inorg. Chem. 2011, 50, 9896–9903; d)
W. I. Dzik, J. N. H. Reek, B. de Bruin, Chem.- Eur. J. 2008, 14, 7594–
7599; e) V. Lyaskovskyy, B. de Bruin, ACS Catal. 2012, 2, 270–279; f)
S. K. Russell, J. M. Hoyt, S. C. Bart, C. Milsmann, S. C. E. Stieber, S. P.
[16] Z. Wang, W. Wan, H. Jiang, J. Hao, J. Org. Chem. 2007, 72, 9364–9367.
This article is protected by copyright. All rights reserved.