Proton- and Redox-Controlled Switching of Photo- and Electrochemiluminescence
FULL PAPER
and for all the decays (global cR2). The errors for all the global analytical
results presented here were below a global cR = 1.2.
[6] a) T. G. Goodson, III, Acc. Chem. Res. 2005, 38, 99–107; b) J. M. J.
Frechet, J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 3713–3725;
c) V. Balzani, P. Ceroni, M. Maestri, C. Saudan, V. Vicinelli, Top.
Curr. Chem. 2003, 228, 159–191; d) M. A. Miller, R. K. Lammi, S.
Prathapan, D. Holten, J. S. Lindsey, J. Org. Chem. 2000, 65, 6634–
6649; e) A. Burghart, L. H. Thoresen, J. Chen, K. Burgess, F. Berg-
strçm, L. B.-. Johansson, Chem. Commun. 2000, 2203–2204;
f) J. Y. Ju, A. N. Glazer, R. A. Mathies, Nucleic Acids Res. 1996, 24,
1144–1148.
[7] a) G. M. Tsivgoulis, J.-M. Lehn, Adv. Mater. 1997, 9, 627–630; b) H.
Spreitzer, J. Daub, Chem. Eur. J. 1996, 2, 1150–1158; c) J. Daub, C.
Fischer, J. Salbeck, K. Ulrich, Adv. Mater. 1990, 2, 366–369.
[8] a) K. Rurack, M. Kollmannsberger, J. Daub, Angew. Chem. 2001,
113, 396–399; Angew. Chem. Int. Ed. 2001, 40, 385–387; b) G.
Hennrich, H. Sonnenschein, U. Resch-Genger, J. Am. Chem. Soc.
1999, 121, 5073–5074; c) M. Kollmannsberger, T. Gareis, S. Heinl, J.
Breu, J. Daub, Angew. Chem. 1997, 109, 1391–1393; Angew. Chem.
Int. Ed. Engl. 1997, 36, 1333–1335.
[9] a) L. Gobbi, P. Seiler, F. Diederich, V. Gramlich, C. Boudon, J.-P.
Gisselbrecht, M. Gross, Helv. Chim. Acta 2001, 84, 743–777; b) L.
Gobbi, P. Seiler, F. Diederich, Angew. Chem. 1999, 111, 737–740;
Angew. Chem. Int. Ed. Engl. 1999, 38, 674–678.
[10] a) C. Trieflinger, K. Rurack, J. Daub, Angew. Chem. 2005, 117,
2328–2331; Angew. Chem. Int. Ed. 2005, 44, 2288–2291; b) J.
Achatz, C. Fischer, J. Salbeck, J. Daub, J. Chem. Soc. Chem.
Commun. 1991, 504–507.
[11] A number of redox-active thiol/disulfide switches that can be
probed by various other instrumental methods have been reported;
see, for example: a) H. Graubaum, F. Tittelbach, G. Lutze, K. Gloe,
M. Mackrodt, J. Prakt. Chem. 1997, 339, 55–58; b) M. Irie, O. Miya-
take, K. Uchida, T. Eriguchi, J. Am. Chem. Soc. 1994, 116, 9894–
9900; c) S. Shinkai, K. Inuzuka, O. Miyazaki, O. Manabe, J. Org.
Chem. 1984, 49, 3440–3442; d) S. Shinkai, K. Inuzuka, O. Manabe,
Chem. Lett. 1983, 747–750; e) T. Minami, S. Shinkai, O. Manabe,
Tetrahedron Lett. 1982, 23, 5167–5170. An example of a thiol/disul-
fide-controlled molecular machine based on rotaxanes has also been
published recently, f) Y. Furusho, T. Hasegawa, A. Tsuboi, N.
Kihara, T. Takata, Chem. Lett. 2000, 18–19.
2
Lifetime distribution analysis (LDA): LDA of the fluorescence decay
traces that could not be sufficiently described by one or two exponentials
in the global analysis was performed with the FLA900 software package
(Edinburgh Analytical Instruments, level 2, version 1.6). The lifetime
range was set to a reasonable value, the starting channel shift was set to
0.5 (not fixed), all available channels were used, and the maximum possi-
ble number of 100 individual exponential lifetimes was employed. No
other constraints were made. The quality of the fit was again reviewed by
the c2 analysis. For all results c2 was below 1.3.
Cyclic voltammetry, spectroelectrochemistry, electrochemiluminescence:
CV measurements were performed with solutions of the appropriate
compound (ca. 1 mm) in highly pure solvents buffered with TBAH (0.2m,
vide ante) on a potentiostat/galvanostat (EG&G 283A). The measure-
ment cell had a three-electrode set-up (Pt working electrode, gold coun-
ter-electrode and Ag/AgCl pseudo-reference electrode) and the measure-
ments were referenced against ferrocenium/ferrocene (Fc+/Fc) as the in-
ternal standard. A Perkin–Elmer Lambda 9 UV/Vis/NIR spectrophotom-
eter in combination with an Amel 2053 potentiostat/galvanostat and a
custom-build quartz cuvette with a minigrid gold net as transparent
working electrode was employed for the spectroelectrochemical experi-
ments (for a detailed description see reference [55]). ECL measurements
were carried out on a Hitachi F-4500 fluorimeter fitted with a customized
ECL cell and a set-up as described in reference [56]. For the ECL experi-
ments, solvents of similar grade to those used in the other electrochemi-
cal studies were employed, and the concentrations of the compounds
were adjusted to about 1 mm. TBAH (0.2m) served as supporting electro-
lyte, and the measurements were performed without stirring of the solu-
tions. The potential was switched with alternation between the oxidation
and reduction potentials (see inset of Figure 6, electrochemical switching
frequency 1 sꢀ1, scan rate of the spectrometer 240 nmminꢀ1). The spiked
spectrum is the result of the “slow” switching frequency of 1 sꢀ1, whilst
the other spectra were obtained with n = 50 and 20 msꢀ1 in the case of
pSAc-1 and (pS-1)2.
[12] a) A. P. Fernandes, A. Holmgren, Antioxid. Redox Signal. 2004, 6,
63–74; b) D. Barford, Curr. Opin. Struct. Biol. 2004, 14, 679–686;
c) K. Linke, U. Jakob, Antioxid. Redox Signal. 2003, 5, 425–434;
d) H. Sies, Free Radic. Biol. Med. 1999, 27, 916–921.
[13] a) G. T. Hanson, R. Aggeler, D. Oglesbee, M. Cannon, R. A. Capa-
ldi, R. Y. Tsien, S. J. Remington, J. Biol. Chem. 2004, 279, 13044–
13053; b) H. Østergaard, A. Henriksen, F. G. Hansen, J. R. Winther,
EMBO J. 2001, 20, 5853–5862.
Acknowledgment
Financial support by the German Research Foundation (DFG), the
German National Academic Foundation (C.T.) and BAMꢁs Ph.D. pro-
gramme (H.R.) is greatly appreciated. This work is part of the Graduate
College “Sensory Photoreceptors in Natural and Artificial Systems”
granted by the DFG (GRK 640, University of Regensburg).
[14] H. Østergaard, C. Tachibana, J. R. Winther, J. Cell Biol. 2004, 166,
337–345.
[15] a) T. Sakata, Y. Yan, G. Marriott, J. Org. Chem. 2005, 70, 2009–
2013; b) P. Ge, P. R. Selvin, Bioconjugate Chem. 2003, 14, 870–876.
[16] R. Rinaldi, G. Maruccio, A. Biasco, P. Visconti, V. Arima, R. Cingo-
lani, Ann. N.Y. Acad. Sci. 2003, 1006, 187–197.
[1] a) L. Pu, Chem. Rev. 2004, 104, 1687–1716; b) A. P. de Silva, B.
McCaughan, B. O. F. McKinney, M. Querol, Dalton Trans. 2003,
1902–1913; c) R. Martinez-Manez, F. Sancenon, Chem. Rev. 2003,
103, 4419–4476.
[17] a) P. Toele, H. Zhang, C. Trieflinger, J. Daub, M. Glasbeek, Chem.
Phys. Lett. 2003, 368, 66–75; b) M. Kollmannsberger, K. Rurack, U.
Resch-Genger, J. Daub, J. Phys. Chem. A 1998, 102, 10211–10220;
c) J. Karolin, L. B.-A. Johansson, L. Strandberg, T. Ny, J. Am. Chem.
Soc. 1994, 116, 7801–7806; d) J. A. Pardoen, J. Lugtenburg, G. W.
Canters, J. Phys. Chem. 1985, 89, 4272–4277.
[18] a) W. Zhao, E. M. Carreira, Angew. Chem. 2005, 117, 1705–1707;
Angew. Chem. Int. Ed. 2005, 44, 1677–1679; b) Z. Shen, H. Rçhr,
K. Rurack, H. Uno, M. Spieles, B. Schulz, G. Reck, N. Ono, Chem.
Eur. J. 2004, 10, 4853–4871; c) K. Rurack, M. Kollmannsberger, J.
Daub, New J. Chem. 2001, 25, 289–292; d) H. Kim, A. Burghart,
M. B. Welch, J. Reibenspies, K. Burgess, Chem. Commun. 1999,
1889–1890; e) J. Chen, J. Reibenspies, A. Derecskei-Kovacs, K. Bur-
gess, Chem. Commun. 1999, 2501–2502.
[2] a) F. M. Raymo, M. Tomasulo, Chem. Soc. Rev. 2005, 34, 327–336;
b) Molecular Switches (Ed.: B. Feringa), Wiley-VCH, Weinheim,
2002; c) A. P. de Silva, D. B. Fox, T. S. Moody, S. M. Weir, Trends
Biotechnol. 2001, 19, 29–34.
[3] a) A. P. de Silva, N. D. McClenaghan, Chem. Eur. J. 2003, 10, 574–
586; b) V. Balzani, A. Credi, M. Venturi, Chem. Phys. Chem. 2003,
3, 49–59; c) F. M. Raymo, Adv. Mater. 2002, 14, 401–414.
[4] a) Special Issue (6) on “Molecular Machines” Acc. Chem. Res. 2001,
34, 409–522; b) C. P. Mandl, B. Kçnig, Angew. Chem. 2004, 116,
1650–1652; Angew. Chem. Int. Ed. 2004, 43, 1622–1624; c) Molec-
ular Devices and Machines,A Journey into the Nanoworld (Eds.: V.
Balzani, M. Venture, A. Credi), Wiley-VCH, Weinheim, 2003;
d) A. R. Pease, J. F. Stoddart, Struct. Bonding 2001, 99, 189–236.
[5] a) J. R. Heath, Pure Appl. Chem. 2000, 72, 11–20; b) D. T.
McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537–
2574; c) A. Harriman, R. Ziessel, Chem. Commun. 1996, 1707–
1716.
[19] a) Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, J. Am.
Chem. Soc. 2004, 126, 3357–3367; b) C. Goze, G. Ulrich, L. Char-
bonnire, M. Cesario, T. PrangØ, R. Ziessel, Chem. Eur. J. 2003, 9,
Chem. Eur. J. 2006, 12, 689 – 700
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
699