to metamagnetic behaviour. These radicals are an important
class of stable open shell monomers for organic materials in
which the redox activity, spin delocalization and strong inter-
molecular interactions in the solid state make them promising
materials for multifunctional magnetic materials.
Notes and references
1
A. Alberola, R. J. Less, C. M. Pask, J. M. Rawson, F. Palacio,
P. Oliete, C. Paulsen, A. Yamaguchi, R. D. Farley and
D. M. Murphy, Angew. Chem., Int. Ed., 2003, 42, 4782–4785.
P. Bag, M. E. Itkis, S. K. Pal, B. Donnadieu, F. S. Tham, H. Park,
J. A. Schlueter, T. Siegrist and R. C. Haddon, J. Am. Chem. Soc.,
Fig. 3 The SOMO and spin density distribution computed by DFT
UB3LYP/6311G+(d,p). Visualized with Gaussview v. 4.0, isovalue 0.004.
2
2
010, 132, 2684–2694.
R. Clement, P. G. Lacroix, D. O’Hare and J. Evans, Adv. Mater.,
994, 6, 794–797.
E. Coronado, J. R. Ga
V. Laukhin, Nature, 2000, 408, 447–449.
T. Sugawara and M. M. Matsushita, J. Mater. Chem., 2009, 19,
738–1753.
Single point electronic structure calculations on XRD
geometry coordinates were performed at the UB3LYP/
3
4
5
6
7
1
6
-311G+(d,p) level. The SOMO orbital topologies and spin
´
lan-Mascaros, C. J. Gomez-Garcıa and
´ ´ ´
density distributions for 1a (Fig. 3) and 1b were found to be
consistent with the highly delocalized nature of the radicals
found by solution state characterization. Strong spin-
delocalization in the benzo moiety is observed with large spin
densities in benzo and N1-phenyl ring via spin delocalization,
as evidenced by the orbital extent of the SOMO. The
C1-phenyl ring is in a quasi-nodal position, and has no SOMO
orbital extension, with some spin population via spin polariza-
tion. Direct evaluation of the quality of the electronic structure
calculations were made by comparison of the calculated hfcc
1
C. Felser, G. H. Fecher and B. Balke, Angew. Chem., Int. Ed.,
2007, 46, 668–699.
J. R. Galan-Mascaros, E. Coronado, P. A. Goddard, J. Singleton,
A. I. Coldea, J. D. Wallis, S. J. Coles and A. Alberola, J. Am.
Chem. Soc., 2010, 132, 9271–9273.
M. Deumal, J. Cirujeda, J. Veciana and J. J. Novoa, Chem.–Eur. J.,
1999, 5, 1631–1642.
N. L. Frank, R. Clerac, J. P. Sutter, N. Daro, O. Kahn, C. Coulon,
M. T. Green, S. Golhen and L. Ouahab, J. Am. Chem. Soc., 2000,
8
9
1
22, 2053–2061.
(
DFT UB3LYP/6-311G+(d,p) and DFT UB3LYP/EPR-II)
1
0 W. Fujita, K. Awaga, Y. Nakazawa, K. Saito and M. Sorai, Chem.
Phys. Lett., 2002, 352, 348–352.
11 A. A. Leitch, J. L. Brusso, K. Cvrkalj, R. W. Reed, C. M. Robertson,
with those determined experimentally by ENDOR for the
1
9
parent DABT radical. Both sets of computations predict
large spin density at N4, with equal and smaller spin densities
at N1 and N2, contrary to experiment. The disagreement is
due to the multiconfigurational character of the delocalized
radicals, in which the greatest spin density resides at N1 (ESIw).
In order to understand the possible contributions to the FM
exchange observed, we carried out a magnetostructural analysis
on 1a. Nuclear crystallographic coordinates were used as
geometry input for single point DFT calculations of a dimer
P. A. Dube and R. T. Oakley, Chem. Commun., 2007, 3368–3370.
2 B. D. Koivisto and R. G. Hicks, Coord. Chem. Rev., 2005, 249,
2612–2630.
3 M. Tamura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y. Hosokoshi,
M. Ishikawa, M. Takahashi and M. Kinoshita, Chem. Phys. Lett.,
1
1
1
991, 186, 401–404.
1
1
4 R. Chiarelli, M. A. Novak, A. Rassat and J. L. Tholence, Nature,
1993, 363, 147–149.
5 A. J. Banister, N. Bricklebank, I. Lavender, J. M. Rawson,
C. I. Gregory, B. K. Tanner, W. Clegg, M. R. J. Elsegood and
F. Palacio, Angew. Chem., Int. Ed. Engl., 1996, 35, 2533–2535.
of s = 1 radicals for radical 1a. The energy of the singlet
16 H. Murata, Y. Miyazaki, A. Inaba, A. Paduan, V. Bindilatti,
N. F. Oliveira, Z. Delen and P. M. Lahti, J. Am. Chem. Soc.,
2
s = 0 (antiferromagnetically coupled) and the triplet s = 1
2
008, 130, 186–194.
(
ferromagnetically coupled) states were calculated. The
1
1
7 C. Kollmar and O. Kahn, J. Chem. Phys., 1993, 98, 453–472.
8 F. A. Neugebauer and I. Umminger, Chem. Ber., 1980, 113, 1205–1225.
magnetic exchange parameter J was determined using the
2
2
expression J = (EBS ꢀ E
T
)/(hS i
T
ꢀ hS iBS) where EBS and
19 F. A. Neugebauer and G. Rimmler, Magn. Reson. Chem., 1988, 26,
95–600.
5
T
E correspond to the energies of the broken symmetry singlet
2
2
20 K. Mukai, K. Inoue, N. Achiwa, J. B. Jamali, C. Krieger and
F. A. Neugebauer, Chem. Phys. Lett., 1994, 224, 569–575.
21 K. A. Hutchison, G. Srdanov, R. Menon, J. C. P. Gabriel,
B. Knight and F. Wudl, J. Am. Chem. Soc., 1996, 118, 13081–13082.
and triplet state, with spin expectation values hS iBS and hS i
T
2
9
of the broken symmetry singlet and triplet state, respectively.
Computations of the S–T gap using a hybrid (B3-LYP) and
hybrid meta exchange correlation functional (MO5-2X) were
performed. The MO5-2X contains greater Hartree–Fock
exchange (B3LYP 20%, MO5-2X 56%), and is useful for
more accurate computations for thermochemistry and noncovalent
2
2
2 O. Kahn, Molecular Magnetism, VCH Publishers, New York, 1993.
3 J. P. Sutter, A. Lang, O. Kahn, C. Paulsen, L. Ouahab and Y. Pei,
J. Magn. Magn. Mater., 1997, 171, 147–152.
24 K. Shimizu, T. Gotohda, T. Matsushita, N. Wada, W. Fujita,
K. Awaga, Y. Saiga and D. S. Hirashima, Phys. Rev. B, 2006, 74, 4.
25 D. P. Zhang, H. L. Wang, Y. T. Chen, Z. H. Ni, L. J. Tian and
J. Z. Jiang, Inorg. Chem., 2009, 48, 11215–11225.
3
0,31
interactions (hydrogen bonding, p–p interactions).
DFT UB3-LYP and DFT UMO5-2X predict a triplet ground
Both
2
6 A. Das, G. M. Rosair, M. S. El Fallah, J. Ribas and S. Mitra,
Inorg. Chem., 2006, 45, 3301–3306.
ꢀ
1
ꢀ1
state with a S–T gap of 5.0 cm , and 5.9 cm , respectively,
consistent with intrachain ferromagnetic exchange via face-to-
face p–p interactions.
2
7 D. Belo, J. Mendonca, I. C. Santos, L. C. J. Pereira, M. Almeida,
J. J. Novoa, C. Rovira, J. Veciana and V. Gama, Eur. J. Inorg.
Chem., 2008, 5327–5337.
We have reported new synthetic methodology for DABT
radicals that exhibit spin delocalization and low oxidation
potentials. The radicals 1a and 1b form slipped 1D chains due
to p–p interactions that give rise to intrachain ferromagnetic
and interchain antiferromagnetic exchange interactions leading
28 G. A. Baker, G. S. Rushbrooke and H. E. Gilbert, Phys. Rev. A,
1964, 135, 1272–1277.
2
9 D. Bhattacharya and A. Misra, J. Phys. Chem. A, 2009, 113,
470–5475.
0 Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2006, 110, 13126–13130.
5
3
31 Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 18.
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3201–3203 3203