The Journal of Physical Chemistry B
ARTICLE
13C NMR (125 MHz, CDCl3) δ 26.7 (2CH2), 32.7 (CH2),
36.8 (2CH2), 125.4 (2CH), 127.5 (4CH), 128.9 (4CH), 141.0
(2C), 145.2 (2C).
(13) Alba, C.; Busse, L. E.; List, D. J.; Angell, C. A. J. Chem. Phys.
1990, 92, 617.
(14) Whitaker, C. M.; McMahon, R. J. J. Phys. Chem. 1996,
100, 1081.
A2. Further Details of the Structure Determination of the
1,2,-Diphenylcycloheptene Crystal. The colourless plate-like
crystal was attached with Exxon Paratone N, to a short length of
fibre supported on a thin piece of copper wire inserted in a
copper mounting pin. The crystal was quenched in a cold
nitrogen gas stream from an Oxford Cryosystems Cryostream.
A Bruker-Nonius FR591 Kappa APEX II diffractometer employ-
ing graphite monochromated MoKR radiation generated from a
fine-focus rotating anode was used for the data collection. Cell
constants were obtained from a least squares refinement against
3704 reflections located between 5.45 and 54.53ꢀ 2θ. Data were
collected at 150(2) Kelvin with φ and ω scans to 55.04ꢀ 2θ. The
data integration and reduction were undertaken with SAINT and
XPREP, and subsequent computations were carried out with the
X-Seed graphical user interface. An empirical absorption correc-
tion determined with SADABS was applied to the data.
The structure was solved in the space group P21/c(#14) by
direct methods with SHELXS-97, and extended and refined with
SHELXL-97. The non-hydrogen atoms in the asymmetric unit
were modelled with anisotropic displacement parameters. A
riding atom model with group displacement parameters was
used for the hydrogen atoms.
Formula C19H20, M = 248.35, Monoclinic, space group P21/
c(#14), a = 12.0582(5), b = 5.6613(2), c = 20.5164(9) Å, β =
94.871(3), V = 1395.5(1) Å3, Dc = 1.182 g cmꢀ3, Z = 4, crystal
size = 0.37 ꢁ 0.14 ꢁ 0.01 mm, colour = colorless, habit plate,
temperature = 150(2) K, λ(MoKR) = 0.71073 Å, μ(MoKR) =
0.066 mmꢀ1, T(SADABS)min,max = 0.933, 0.999, 2θmax = 55.04,
(15) Mandanici, A.; Cutroni, M.; Triolo, A.; Rodriguez-Mora, V.;
Ramos, M. A. J. Chem. Phys. 2006, 125, 054514.
(16) Andrews, J. N.; Ubbelohde, A. R. Proc. R. Soc. (London) 1955,
A228, 435.
(17) Inoue, Y.; Yokoyama, T.; Yamasaki, N.; Tai, A. Nature 1989,
341, 225.
(18) McMurry, J. E.; Fleming, M. P.; Kees, K. L.; Krepski, L. R. J. Org.
Chem. 1978, 43, 3255.
(19) Baumstark, A. L.; McCloskey, C. J.; Witt, K. E. J. Org. Chem.
1978, 43, 3609.
(20) SMART, SAINT, and XPREP. Area Detector Control and Data
Integration and Reduction Software; Bruker Analytical X-ray Instruments
Inc.: Madison, WI, 1995.
(21) Barbour, L. J. J. Supramol. Chem. 2001, 1, 189.
(22) Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
(23) Hohlneicher, G.; M€uller, M.; Demmer, M.; Lex, J.; Penn, J. H.;
Gan, L.; Loesel, P. D. J. Am. Chem. Soc. 1988, 110, 4483.
(24) Angell, C. A.; Busse, L. E.; Cooper, E. E.; Kadiyala, R. K.;
Dworkin, A.; Ghelfenstein, M.; Szwarc, H.; Vassal, A. J. Chim. Phys. 1985,
82, 267.
(25) Turnbull, D.; Cohen, M. H. J. Chem. Phys. 1958, 29, 1049.
(26) Turnbull, D. Contemp. Phys. 1969, 10, 473.
(27) Uhlmann, D. R. J. Non-Cryst. Solids 1972, 7, 337.
(28) Laird, B. J. Chem. Phys. 2001, 115, 2889.
(29) Kauzman, W. Chem. Rev. 1948, 43, 219.
(30) Alba-Simionesco, C.; Fan, J.; Angell, C. A. J. Chem. Phys. 1999,
110, 5262.
(31) Lu, Z. P.; Liu, C. T. Phys. Rev. Lett. 2003, 91, 115505.
(32) Fuson, R. C.; Walker, J. T. Organic Syntheses; Wiley: New York,
1943; Vol. 2, p 169.
hkl range = ꢀ15 15, ꢀ7 7, ꢀ24 26; N = 12282, Nind
=
3201(Rmerge = 0.0273), Nobs = 2398(I > 2σ(I)), Nvar = 172,
residuals [R1 = ∑ Fo| ꢀ |Fc /∑ Fo| for Fo > 2σ(Fo); wR2 =
2
2
(∑w(Fo ꢀ Fc2)2/∑(wFc2)2)1/2 all reflections w = 1/[σ2(Fo ) þ
(0/0368P)2 þ 0.4519P] where P = (Fo þ 2Fc2)/3] R1(F)
2
0.0394, wR2(F2) 0.0937, GoF(all) 1.007, ΔFmin,max ꢀ0.173,
0.230 eꢀ Åꢀ3
.
’ ACKNOWLEDGMENT
We gratefully acknowledge support from the Australian
Research Council.
’ REFERENCES
(1) Greet, R. J.; Turnbull, D. J. Chem. Phys. 1967, 46, 1243.
(2) Desiraju, G. R. Crystal Engineering: The Design of Organic Solids;
Elsevier: New York, 1989).
(3) Klement, W.; Willens, R. H.; Duwez, P. Nature 1960, 187, 869.
(4) Suryanarayana, C.; Seki, I.; Inoue, A. J. Non-Cryst. Solids 2009,
355, 355.
(5) Yu., L. Adv. Drug Delivery Rev. 2001, 48, 27.
(6) Dimitrakopoulos, C. D.; Mascaro, D. J. IBM J. Res. Dev. 2001,
45, 11. Choo, B.-K.; Choi, J.-S.; Kim, S.-W.; Park, K.-C.; Jang, J. J. Non-
Cryst. Solids 2006, 352, 1704.
(7) Fox, T. G.; Flory, P. J. J. Appl. Phys. 1950, 21, 581.
(8) Cowie, J. M. G. Eur. Polym. J. 1975, 11, 297.
(9) Hintermeyer, J.; Herrmann, A.; Kahlau, R.; Goiceanu, C.;
R€ossler, E. A. Macromolecules 2008, 41, 9335.
(10) Agapov, A. L.; Sokolov, A. P. Macromolecules 2009, 42, 2877.
(11) Angell, C. A.; Sare, J. M.; Sare, E. J. J. Phys. Chem. 1978,
82, 2622.
(12) Wang, L.-M.; Richert, R. J. Phys. Chem. B 2007, 111, 3201.
4702
dx.doi.org/10.1021/jp110975y |J. Phys. Chem. B 2011, 115, 4696–4702