Please do not adjust margins
ChemComm
DOI: 10.1039/C7CC06221D
COMMUNICATION
Journal Name
novel catalyst via an electrochemical technique. The reaction
mechanism involves homolytic cleavage of the cobalt–carbon
Hisaeda, Angew. Chem. Int. Ed., 2015, 54, 15439; (d) H.
Shimakoshi, Y. Hisaeda, ChemPlusChem, 2014, 79, 1250.
(a) K. Müller, C. Faeh, F. Diederich, Science, 2007, 317, 1881;
6
(
Co–R
to proceed under inert conditions. The use of simple and
costꢀeffective fluoroalkylating reagents (R I) is advantageous.
Moreover, as is a naturallyꢀderived cobalt catalyst, these
f f
) bond and generation of an R radical for the reaction
(
b) W. K. Hagmann, J. Med. Chem., 2008, 51, 4359; c) K. L.
Kirk, Org. Process Res. Dev., 2008, 12, 305; (d) S. Purser, P. R.
Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev., 2008,
37, 320; (e) O. A. Tomashenko, V. V. Grushin, Chem. Rev.,
f
1
2
011, 111, 4475; (f) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu,
J. L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev.,
016, 116, 422.
reaction systems avoid the use of expensive and toxic metal
catalysts. A relatively high TON (over 100) was observed due
to the inherent high stability of the vitamin B12 framework.
2
7
8
(a) J.-A. Ma, D. Cahard, Chem. Rev., 2004, 104, 6119; (b) T.
Furuya, A. S. Kamlet, T. Ritter, Nature, 2011, 473, 470; (c) A.
Studer, Angew. Chem. Int. Ed., 2012, 51, 8950; (d) C. Alonso,
E. M. d. Marigorta, G. Rubiales, F. Palacios, Chem. Rev., 2015,
Moreover, the discovery of
a
radical perfluoroalkylation
) bond is an
reaction mediated by a cobalt–carbon (Co–R
f
important development in organometallic chemistry because
common perfluoroalkyl organometallic species, such as
1
15, 1847.
Examples of palladium-catalyzed reactions: (a) X. Wang, L.
Truesdale, J.-Q. Yu, J. Am. Chem. Soc., 2010, 132, 3648; (b) E.
J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson, S. L.
Buchwald, Science, 2010, 328, 1679; (c) X. Mu, S. Chen, X.
Zhen, G. Liu, Chem. Eur. J., 2011, 17, 6039; (d) R. N. Loy, M. S.
Sanford, Org. Lett., 2011, 13, 2548; (e) K. Natte, R. V.
Jagadeesh, L. He, J. Rabeah, J. Chen, C. Taeschler, S. Ellinger,
F. Zaragoza, H. Neumann, A. Brückner, M. Beller, Angew.
Chem. Int. Ed., 2016, 55, 2782.
Examples of copper-mediated reactions: (a) M. Oishi, H.
Kondo, H. Amii, Chem. Commun., 2009, 1909; (b) R. Shimizu,
H. Egami, T. Nagi, J. Chae, Y. Hamashima, M. Sodeoka,
Tetrahedron Lett., 2010, 51, 5947; (c) T. Knauber, F. Arikan,
lithium–carbon (R
f f
ꢀLi) and magnesium–carbon (R –Mg)
species, are unstable at room temperature and decompose
1
2
via
αꢀ or βꢀelimination of the fluoride anion. Based on these
preliminary results, we are currently investigating the
difluoromethylation,
perfluoroalkylation
trifluoromethylation
and
of
aromatic and heteroaromatic
compounds based on other cobaltꢀmediated catalytic
reactions.
9
This work was supported by JST PRESTO Grant Number
JPMJPR1414 and JSPS KAKENHI Grant Numbers JP16H04119
(
Grant-in-Aid for Scientific Research (B) for Y. H.), JP16H01035
Precisely Designed Catalysts with Customized Scaffolding for
G.-V. Röschenthaler, L. J. Gooßen, Chem. Eur. J., 2011, 17
,
(
2689; (d) J. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu, L.
Liu, Chem. Commun., 2011, 47, 4300; (e) N. D. Litvinas, P. S.
Fier, J. F. Hartwig, Angew. Chem. Int. Ed., 2012, 51, 536; (f) T.
Liu, Q. Shen, Org. Lett., 2011, 13, 2342; (g) Y. Ye, M. S.
Sanford, J. Am. Chem. Soc., 2012, 134, 9034; (h) Y. Li, L. Wu,
H. Neumann, M. Beller, Chem. Commun., 2013, 49, 2628; (i)
Y. H.), JP17H04875 (Grant-in-Aid for Young Scientists (A) for T.
O.), and JP17H05161 (π-System Figuration for T. O.). We thank
3
TOSOH F-TECH INC. for the gift of CF I.
M. Chen, S. L. Buchwald, Angew. Chem. Int. Ed., 2013, 52
11628; (j) S. Cai, C. Chen, Z. Sun, C. Xi, Chem. Commun.,
013, 49, 4552; (k) Z. Gonda, S. Kovács, C. Wéber, T. Gáti, A.
Mészáros, A. Kotschy, Z. Novák, Org. Lett., 2014, 16, 4268.
0 (a) D. A. Nagib, D.W. C. MacMillan, Nature, 2011, 480, 224;
,
Notes and references
2
1
2
(a) Vitamin B12 and B -Protein, ed. B. Kräutler, D. Arigoni, B.
12
T. Golding, Wiley-VCH, Weinheim, 1998; (b) Chemistry and
Biochemistry of B , ed. R. Banerjee, Wiley-Interscience, New
1
1
2
(
b) Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su,
D. G. Blackmond, P. S. Baran, Proc. Natl. Acad. Sci. USA,
011, 108, 14411; (c) A. G. O’ Brien, A. Maruyama, Y.
York, 1999; (c) R. Banerjee, S. W. Ragsdale, Annu. Rev.
Biochem., 2003, 72, 209; (d) T. Toraya, Chem. Rev., 2003,
2
103, 2095; (e) K. L. Brown, Chem. Rev., 2005, 105, 2075; (f) G.
Inokuma, M. Fujita, P. S. Baran, D. G. Blackmond, Angew.
Chem. Int. Ed., 2014, 53, 11868; (d) F. Sladojevich, E. McNeill,
J. Börgel, S.-L. Zheng, T. Ritter, Angew. Chem. Int. Ed., 2015,
54, 3712; (e) L. Cui, Y. Matusaki, N. Tada, T. Miura, B. Uno, A.
Itoh, Adv. Synth. Catal., 2013, 355, 2203; (f) H. Sawada, M.
Nakayama, J. Fluorine Chem., 1990, 46, 423; (g) B. H.
N. Schrauzer, E. Deutsch, J. Am. Chem. Soc., 1969, 91, 3341.
(a) C. J. Gantzer, L. P. Wackett, Environ. Sci. Technol., 1991,
25,
715; (b) T. Darbre, R. Keese, V. Siljegovic,
Chem.Commun., 1996, 1561; (c) D.-L. Zhou, C. K. Njue, J. F.
Rusling, J. Am. Chem. Soc., 1999, 121, 2909; (d) F. Sunand, T.
Darbre, Org. Biomol. Chem., 2003,
McGinley, H. A. Relyea, W. A. van der Donk, Synlett, 2006,
11; (f) H. V. Motwani, S. Qiu, B. T. Golding, H. Kylin, M.
1, 3154; (e) C. M.
Langlois, E. Laurent, N. Roidot, Tetrahedron Lett., 1991, 32
525; (h) T. Kino, Y. Nagase, Y. Ohtsuka, K. Yamamoto, D.
Uraguchi, K. Tokuhisa, T. Yamakawa, J. Fluorine Chem., 2010,
31, 98; (i) L. He, K. Natte, J. Rabeah, C. Taeschler, H.
Neumann, A. Brückner, M. Beller, Angew. Chem. Int. Ed.
015, 54, 4320.
,
7
2
Törnqvist, Food Chem. Toxicol., 2011, 49, 750; g) Y. Hisaeda,
H. Shimakoshi, in Handbook of Porphyrin Science, ed. K. M.
Kadish, K. M. Smith, R. Guilard, World Scientific, 2010, vol.
1
2
10, pp. 313–370.
1
1
1 L. Randaccio, G. Brancatelli, N. Demitri, R. Dreos, N. Hickey,
P. Siega, S. Geremia, Inorg. Chem., 2013, 52, 13392.
2 (a) X. Wang, K. Hirano, D. Kurauchi, H. Kato, N. Toriumi, R.
Takita, M. Uchiyama, Chem. Eur. J., 2015, 21, 10993; (b) D. J.
Burton, Z.-Y. Yang, Tetrahedron, 1992, 48, 189.
3
See reviews: (a) M. Giedyk, K. Goliszewska, D. Gryko, Chem.
Soc. Rev., 2015, 44, 3391; (b) K. Gruber, B. Puffer, B. Kräutler,
Chem. Soc. Rev., 2011, 40, 4346; (c) W. Buckel, B. T. Golding,
Annu. Rev. Microbiol., 2006, 60, 27; (d) R. Banerjee, S. W.
Ragsdale, Annu. Rev. Biochem., 2003, 72, 209; (e) H.
Shimakoshi, Y. Hisaeda, ChemPlusChem, 2017, 82, 18.
(a) Y. Murakami, Y. Hisaeda, A. Kajihara, Bull. Chem. Soc.
Jpn., 1983, 56, 3642; (b) Y. Murakami, Y. Hisaeda, A. Kajihara,
T. Ohno, Bull. Chem. Soc. Jpn., 1984, 57, 405.
4
5
(a) H. Shimakoshi, M. Tokunaga, Y. Hisaeda, Dalton Trans.,
2004, 878; (b) H. Shimakoshi, M. Abiru, S.-i. Izumi, Y.
Hisaeda, Chem. Commun., 2009, 6427; (c) H. Shimakoshi, Y.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins