Journal of the American Chemical Society
Page 4 of 9
membrane as if it were a small molecule. Further, this
M.; Raines, R. T. Protein Sci. 2005, 14, 1538–1544. (c)
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
chemical modification is traceless, being removable by
cellular esterases. This delivery strategy provides an
unprecedented means to deliver native proteins into cells
for applications in the laboratory and, potentially, the
clinic.
Stanzl, E. G.; Trantow, B. M.; Vargas, J. R.; Wender, P. A.
Acc. Chem. Res. 2013, 46, 2944–2954. (d) Nischan, N.;
Herce, H. D.; Natale, F.; Bohlke, N.; Budisa, N.; Cardoso,
M. C.; Hackenberger, C. P. R. Angew. Chem., Int. Ed.
2
015, 54, 1950–1953. (e) LaRochelle, J. R.; Cobb, G. B.;
Steinauer, A.; Rhoades, E.; Schepartz, A. J. Am. Chem.
Soc. 2015, 137, 2536–2541. (f) Qian, Z.; Martyna, A.;
Hard, R. L.; Wang, J.; Appiah-Kubi, G.; Coss, C.; Phelps,
M. A.; Rossman, J. S.; Pei, D. Biochemistry 2016, 55,
2601–2612. (g) Nagel, Y. A.; Raschle, P. S.; Wennemers,
H. Angew. Chem., Int. Ed. 2017, 56, 122–126.
(8) Zuris, J. A.; Thompson, D. B.; Shu, Y.; Guilinger, J.
P.; Bessen, J. L.; Hu, J. H.; Maeder, M. L.; Joung, J. K.;
Chen, Z.-Y.; Liu, D. R. Nat. Biotechnol. 2015, 33, 73–80.
(9) Kim, S.; Kim, D.; Cho, S. W.; Kim, J.; Kim, J.-S.
Genome Res. 2014, 24, 1012–1019.
(10) Palte, M. J.; Raines, R. T. J. Am. Chem. Soc. 2012,
134, 6218–6223.
(11) Turcotte, R. F.; Lavis, L. D.; Raines, R. T. FEBS J.
2009, 276, 4270–4281.
(12) Perrett, F.; Nishihara, M.; Takeuchi, T.; Futaki, S.;
Lazar, A. N.; Coleman, A. W.; Sakai, N.; Matile, S. J. Am.
Chem. Soc. 2005, 127, 1114–1115.
(13) Takeuchi, T.; Kosuge, M.; Tadokoro, A.; Sugiura,
Y.; Nishi, M.; Kawata, M.; Sakai, N.; Matile, S.; Futaki, S.
ACS Chem. Biol. 2006, 1, 299–303.
ASSOCIATED CONTENT
Supporting Information
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Synthetic methods, cell biological methods, and additional
analytical data, including Table S1 and Figures S1–S8. This
material is available free of charge via the Internet at
http://pubs.acs.org.
AUTHOR INFORMATION
Corresponding Author
*
ORCID
Ronald T. Raines: 0000-0001-7164-1719
ACKNOWLEDGMENTS
We are grateful to Dr. K. A. Andersen for early observa-
tions, Dr. E. K. Grevstad for help with microscopy, L. B.
Hyman for technical advice, Dr. T. T. Hoang for supplying
FLAG–ANG, and Dr. C. L. Jenkins for contributive discus-
sions. K.A.M. was supported by Molecular Biosciences
Training Grant T32 GM007215 (NIH). J.E.L. was support-
ed by a National Science Foundation Graduate Research
Fellowship. This work was supported by grant R01
GM044783 (NIH) and made use of the National Magnetic
Resonance Facility at Madison, which is supported by grant
P41 GM103399 (NIH).
(
14) (a) Elmquist, A.; Hansen, M.; Langel, Ü. Biochim.
Biophys. Acta 2006, 1758, 721–729. (b) Di Pisa, M.;
Chassaing, G.; Swiecicki, J.-M. Biochemistry 2015, 54,
1
94–207.
15) (a) Testa, B.; Mayer, J. M. Hydrolysis in Drug and
Prodrug Metabolism; Wiley–VCH: Weinheim, Germany,
(
2
2
003. (b) Liederer, B. M.; Borchardt, R. T. J. Pharm. Sci.
006, 1177–1195. (c) Huttunen, K. M.; Raunio, H.; Rautio,
J. Pharmacol. Rev. 2011, 63, 750–771. (d) Redasani, V. K.;
Bari, S. B. Prodrug Design: Perspectives, Approaches and
Applications in Medicinal Chemistry; Academic Press:
New York, NY, 2015.
REFERENCES
(
(
1) Dimitrov, D. S. Methods Mol. Biol. 2012, 899, 1–26.
2) (a) Pisal, D. S.; Kosloski, M. P.; Balu-Iyer, S. V. J.
(
16) (a) McGrath, N. A.; Andersen, K. A.; Davis, A. K.
Pharm. Sci. 2010, 99, 2557–2575. (b) Fu, A.; Tang, R.;
Hardie, J.; Farkas, M. E.; Rotello, V. M. Bioconjugate
Chem. 2014, 25, 1602–1608.
F.; Lomax, J. E.; Raines, R. T. Chem. Sci. 2014, 6, 752–
7
2
55. (b) Mix, K. A.; Raines, R. T. Org. Lett. 2015, 17,
358–2361. (c) Mix, K. A.; Aronoff, M. R.; Raines, R. T.
(
3) (a) Somia, N.; Verma, I. M. Nat. Rev. Genet. 2000, 1,
ACS Chem. Biol. 2016, 11, 3233–3244.
17) Myers, E. L.; Raines, R. T. Angew. Chem., Int. Ed.
009, 48, 2359–2363.
18) (a) Roberts, J. D.; Watanabe, W.; McMahon, R. E.
9
2
1–99. (b) Collins, M.; Thrasher, A. Proc. Biol. Sci. 2015,
82, 20143003.
(
2
(
4) Leader, B.; Baca, Q. J.; Golan, D. E. Nat. Rev. Drug
Discov. 2008, 7, 21–39.
5) (a) Fuchs, S. M.; Raines, R. T. ACS Chem. Biol.
007, 2, 167–170. (b) McNaughton, B. R.; Cronican, J. J.;
Thompson, D. B.; Liu, D. R. Proc. Natl. Acad. Sci. USA
009, 106, 6111–6116. (c) Bruce, V. J.; Lopez-Islas, M.;
McNaughton, B. R. Protein Sci. 2016, 25, 1129–1137.
6) (a) Futami, J.; Yamada, H. Curr. Pharm. Biotechnol.
008, 9, 180–184. (b) Ellis, G. A.; Palte, M. J.; Raines, R.
T. J. Am. Chem. Soc. 2012, 134, 3631–3634.
7) (a) Schwarze, S. R.; Ho, A.; Vocero-Akbani, A.;
Dowdy, S. F. Science 1999, 285, 1569–1572. (b) Fuchs, S.
(
J. Am. Chem. Soc. 1951, 73, 760–765. (b) Roberts, J. D.;
Watanabe, W.; McMahon, R. E. J. Am. Chem. Soc. 1951,
(
2
7
3, 2521–2523.
19) Tomoda, H.; Kishimoto, Y.; Lee, Y. C. J. Biol.
Chem. 1989, 264, 15445–15450.
20) (a) Maier, K.; Wagner, E. J. Am. Chem. Soc. 2012,
34, 10169–10173. (b) Ray, M.; Tang, R.; Jiang, Z.;
Rotello, V. M. Bioconjugate Chem. 2015, 26, 1004–1007.
(
2
(
(
1
2
(
ACS Paragon Plus Environment