Journal of the American Chemical Society
Page 4 of 5
Ingendoh, A. Chem. Ber. 1979, 112, 1297. (b) Wessjohann, L.;
McGaffin, G.; De Meijere, A. Synthesis 1989, 359. (c) Lykke, L.;
quent nucleophilic attack by the N‐H ketimine. Future stu‐
dies will focus on mechanism‐guided catalyst improvement
for expanded substrate scopes and synthetic applications of
the 2‐aza‐1,3‐diene products.
1
2
3
4
5
6
7
8
Monge, D.; Nielsen, M.; Jorgensen, K. A. Chem. Eur. J. 2010, 16, 13330.
11. Nickel‐based catalysts for alkyne hydroamination are rare and
limited by low reactivity: (a) Campi, E. M.; Jackson, W. R. J.
Organomet. Chem. 1996, 523, 205. (b) Müller, T. E. Tetrahedron Lett.
1998, 39, 5961. (c) Reyes‐Sánchez, A.; Cañavera‐Buelvas, F.; Barrios‐
Francisco, R.; Cifuentes‐Vaca, O. L.; Flores‐Alamo, M.; García, J. J.
Organometallics 2011, 30, 3340. (d) Reyes‐Sánchez, A.; García‐
Ventura, I.; García, J. J. Dalton Trans. 2014, 43, 1762.
12. (a) Albrecht, M. Chem. Rev. 2010, 110, 576. (b) Li, L.; Brennessel,
W. W.; Jones, W. D. Organometallics 2009, 28, 3492. (c) Li, L.;
Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414.
13. (a) Monbaliu, J.‐C. M.; Masschelein, K. G. R.; Stevens, C. V.
Chem. Soc. Rev. 2011, 40, 4708. (b) Masson, G.; Lalli, C.; Benohoud,
M.; Dagousset, G. Chem. Soc. Rev. 2013, 42, 902.
14. For precious metal‐catalyzed intermolecular hydroamination
of alkynes, see ref 9 and representative studies below: (a) Shimada,
T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12670. (b) Mizushima,
E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349. (b) Brunet, J.‐J.;
Chu, N. C.; Diallo, O.; Vincendeau, S. J. Mol. Catal. A: Chem. 2005,
240, 245. (c) Lavallo, V.; Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.;
Bertrand, G. Angew. Chem. Int. Ed. 2008, 47, 5224. (d) Zeng, X.; Frey,
G. D.; Kinjo, R.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2009,
131, 8680. (e) Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N. G.;
Shi, X. J. Am. Chem. Soc. 2009, 131, 12100.
15. For early transition metal or rare earth metal‐catalyzed
intermolecular alkyne hydroamination, see ref 9 and the following:
(a) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc.,
1992, 114, 1708. (b) Li, Y.; Marks, T. J. Organometallics 1996, 15, 3770.
(c) Haak, E.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 1999, 38,
3389. (d) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001,
20, 3967. (e) Li, C.; Thomson, R. K.; Gillon, B.; Patrick, B. O.; Schafer,
L. L. Chem. Commun. 2003, 2462. (f) Kim, H.; Livinghouse, T.; Shim,
J. H.; Lee, S. G.; Lee, P. H. Adv. Synth. Catal. 2006, 348, 701.
16. Adding H2O led to slightly improved yield for 3a compared to
reactions without any additives (entries 11, 12) and generated only
trace amount of benzophenone (<5%) by GC analysis. However,
imine hydrolysis with added H2O became much more significant
with less stable N‐H ketimines. Thus, our catalyst development
efforts focused on using base additives rather than added H2O.
17. (a) Alphonse, P.; Moyen, F.; Mazerolles, P. J. Organomet. Chem.
1988, 345, 209. (b) Eisch, J. J.; Ma, X.; Han, K. I.; Gitua, J. N.; Krueger,
C. Eur. J. Inorg. Chem. 2001, 77. (c) Ogata, K.; Murayama, H.;
Sugasawa, J.; Suzuki, N.; Fukuzawa, S.‐I. J. Am. Chem. Soc. 2009, 131,
3176. (d) Horie, H.; Kurahashi, T.; Matsubara, S. Chem. Commun.
2010, 46, 7229.
ASSOCIATED CONTENT
Supporting Information
Detailed experimental procedures, spectral data, and CIF file
for reported single crystals. This material is available free of
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
Financial support for this work was provided by NSF (CHE‐
1301409). We thank NSF‐CRIF (CHE‐0946990) for funding
the purchase of departmental X‐ray diffractometer and Dr.
Angel Ugrinov for solving the single‐crystal XRD structures.
REFERENCES
1. Representative recent reviews on transition metal‐catalyzed
transformations of N‐substituted imines: (a) Vesely, J.; Rios, R. Chem.
Soc. Rev. 2014, 43, 611. (b) Marques, C. S.; Burke, A. J. ChemCatChem
2011, 3, 635. (c) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem.
Rev. 2010, 110, 3600. (d) Fabrello, A.; Bachelier, A.; Urrutigoity, M.;
Kalck, P. Coord. Chem. Rev. 2010, 254, 273. (e) Ferraris, D.
Tetrahedron 2007, 63, 9581.
2. For recent reviews on transition metal‐catalyzed C‐H activation
that include focused discussions on imine‐type directing groups, see:
(a) He, R.; Huang, Z.‐T.; Zheng, Q.‐Y.; Wang, C. Tetrahedron Lett.
2014, 55, 5705. (b) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41,
3651. (c) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012,
112, 5879. (d) Yu, J.‐Q.; Shi, Z.; Editors C‐H Activation. [In: Top. Curr.
Chem., 2010; 292], 2010. (e) Sun, C.‐L.; Li, B.‐J.; Shi, Z.‐J. Chem. Rev.
2011, 111, 1293. (f) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212. (g)
Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (h) Colby, D.
A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (i) Chen,
X.; Engle, K. M.; Wang, D.‐H.; Yu, J.‐Q. Angew. Chem., Int. Ed. 2009,
48, 5094.
3. (a) Wolfe, J. P.; Ahman, J.; Sadighi, J. P.; Singer, R. A.; Buchwald,
S. L. Tetrahedron Lett. 1997, 38, 6367. (b) Mann, G.; Hartwig, J. F.;
Driver, f. M. S.; Fernandez‐Rivas, C. J. Am. Chem. Soc. 1998, 120, 827.
4. (a) Hou, G.; Gosselin, F.; Li, W.; McWilliams, J. C.; Sun, Y.;
Weisel, M.; O'Shea, P. D.; Chen, C.‐y.; Davies, I. W.; Zhang, X. J. Am.
Chem. Soc. 2009, 131, 9882. (b) Hou, G.; Tao, R.; Sun, Y.; Zhang, X.;
Gosselin, F. J. Am. Chem. Soc. 2010, 132, 2124.
5. Katagiri, T.; Mukai, T.; Satoh, T.; Hirano, K.; Miura, M. Chem.
Lett. 2009, 38, 118.
6. (a) Fukutani, T.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M.
Chem. Commun. 2009, 5141. (b) He, R.; Huang, Z.‐T.; Zheng, Q.‐Y.;
Wang, C. Angew. Chem. Int. Ed. 2014, 53, 4950.
18. Terminal alkynes such as phenylacetylene led to alkyne oligo‐
merization instead of desired hydroimination; see refs 17c and 17d.
19. It is not clear to us why aryl alky alkyne substrates display such
high chemoselectivity towards oligomerization (e.g. cyclotrimeriza‐
tion) over desired hydroimination. Alkyne reactivity for catalytic
cyclotrimerization and hydroamination is known to depend on both
steric and electronic factors and can be difficult to predict. See ref 11d
for an example of chemoselective alkyne hydroamination vs. cyclo‐
trimerization using Ni(II) vs. Ni(0) catalyst precursors.
20. Müller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A.‐K.; Walter,
E.; Yan, Y.‐K. Organometallics 2000, 1, 170.
21. Formation of the (Z)‐enamine product could also be explained
by E/Z isomerization of an initial (E)‐enamine product from syn‐
hydroamination pathways. Such a scenario cannot be ruled out at
this point, but the lack of observation for any syn‐addition products
suggested that it was unlikely to be the major reaction pathway.
22. Hoberg, H.; Goetz, V.; Krueger, C.; Tsay, Y. H. J. Organomet.
Chem. 1979, 169, 209.
23. The lack of reactivity for electron‐rich diaryl N‐H ketimines
was probably due to strong Ni‐imine complexation that prevented
imine replacement by alkyne substrates. Such catalyst deactivation
by strongly nucleophilic amines are known for catalytic alkyne
hydroamination. See ref 9c and the following example: Karshtedt, D.;
Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 12640.
7. (a) Sun, Z.‐M.; Chen, S.‐P.; Zhao, P. Chem. Eur. J. 2010, 16, 2619.
(b) Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2011, 50, 11098. (c)
Zhang, J.; Ugrinov, A.; Zhao, P. Angew. Chem., Int. Ed. 2013, 52, 6681.
8. Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2010, 49, 8181.
9. Representative recent reviews on transition metal‐catalyzed
hydroamination: (a) Yim, J. C.‐H.; Schafer, L. L. Eur. J. Org. Chem.
2014, 2014, 6825. (b) Hesp, K. D.; Stradiotto, M. ChemCatChem 2010,
2, 1192. (c) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada,
M. Chem. Rev. 2008, 108, 3795. (d) Widenhoefer, R. A.; Han, X. Eur. J.
Org. Chem. 2006, 20, 4555.
10. Aza‐Michael additions by benzophenone imine to electron‐
deficient alkenes and alkynes have been reported: (a) Boehme, H.;
ACS Paragon Plus Environment