Organic Letters
Letter
135, 17494. (d) Xia, J.-B.; Zhu, C.; Chen, C. Chem. Commun. 2014, 50,
11701. (e) Cantillo, D.; de Frutos, O.; Rincon, J. A.; Mateos, C.; Kappe,
́
C. O. J. Org. Chem. 2014, 79, 8486. (f) Ota, E.; Mikame, Y.; Hirai, G.;
Nishiyama, S.; Sodeoka, M. Synlett 2016, 27, 1128. (g) Lipp, A.; Lahm,
G.; Opatz, T. J. Org. Chem. 2016, 81, 4890. (h) For a recent review, see:
Chen, C. Org. Biomol. Chem. 2016, 14, 8641.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(9) For reports using allyl sulfones as an allyl source in radical
chemistry, see: (a) Baldwin, J. E.; Adlington, R. M.; Birch, D. J.;
Crawford, J. A.; Sweeney, J. B. J. Chem. Soc., Chem. Commun. 1986, 1339.
(b) Padwa, A.; Murphree, S. S.; Yeske, P. E. Tetrahedron Lett. 1990, 31,
2983. (c) Kim, S.; Lim, C. J. Angew. Chem., Int. Ed. 2002, 41, 3265.
(d) Lee, S.; Lim, C. J.; Kim, S. Bull. Korean Chem. Soc. 2004, 25, 1611.
(e) Lee, J. Y.; Kim, S. Bull. Korean Chem. Soc. 2006, 27, 189.
(f) Schaffner, A.-P.; Renaud, P. Angew. Chem., Int. Ed. 2003, 42, 2658.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the Program to Disseminate
Tenure Tracking System (MEXT, Japan) and the research grant
of Astellas Foundation for Research on Metabolic Disorders. We
thank Prof. Masayuki Inoue and Dr. Yuuki Amaoka at The
University of Tokyo for valuable suggestions on design of the
allyl source. We also acknowledge Prof. Masahiro Terada at
Tohoku University for continuous encouragement.
(g) Xu, G.; Luthy, M.; Habegger, J.; Renaud, P. J. Org. Chem. 2016, 81,
̈
1506. (h) De Dobbeleer, C.; Pospisi
F.; Marko, I. E. Chem. Commun. 2009, 2142. (i) Quinn, R. K.; Schmidt,
V. A.; Alexanian, E. J. Chem. Sci. 2013, 4, 4030. (j) Corce, V.;
̌
l, J.; De Vleeschouwer, F.; De Proft,
́
́
Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fensterbank,
L. Angew. Chem., Int. Ed. 2015, 54, 11414. (k) Cui, L.; Chen, H.; Liu, C.;
Li, C. Org. Lett. 2016, 18, 2188. (l) Heitz, D. R.; Rizwan, K.; Molander,
G. A. J. Org. Chem. 2016, 81, 7308. (m) Qi, L.; Chen, Y. Angew. Chem.,
Int. Ed. 2016, 55, 3312.
(10) For protocols of the allyl source preparation, see: (a) Padwa, A.;
Kline, D. N.; Norman, B. H. Tetrahedron Lett. 1988, 29, 265. (b) Padwa,
A.; Kline, D. N.; Murphree, S. S.; Yeske, P. E. J. Org. Chem. 1992, 57, 298.
(c) Chang, M.-Y.; Wu, M.-H. Synlett 2014, 25, 411.
(11) Kamijo, S.; Tao, K.; Takao, G.; Tonoda, H.; Murafuji, T. Org. Lett.
2015, 17, 3326.
(12) Baxter, I.; Cameron, D. W.; Titman, R. B. J. Chem. Soc. C 1971,
1253.
(13) The reactions in acetone, benzene, and t-BuOH gave lower yields.
(14) Inorganic salts, such as Li2CO3, Na2CO3, Cs2CO3, and CaCO3, as
well as 2,6-di(tert-butyl)pyridine, gave similar results. Accordingly, it is
presumed that these bases neutralize in situ generated PhSO2H to
suppress undesired side reactions. A similar base effect was observed in
ref 8g.
(15) 2-Allyladamantane 2d′ was prepared for unambiguous structure
confirmation; see: (a) Wang, G.-Z.; Jiang, J.; Bu, X.-S.; Dai, J. J.; Xu, J.;
Fu, Y.; Xu, H.-J. Org. Lett. 2015, 17, 3682. (b) Inomata, K.; Sasaoka, S.-i.;
Kobayashi, T.; Tanaka, Y.; Igarashi, S.; Ohtani, T.; Kinoshita, H.;
Kotake, H. Bull. Chem. Soc. Jpn. 1987, 60, 1767.
REFERENCES
■
(1) For selected reviews on allylation, see: (a) Yamamoto, Y.; Asao, N.
Chem. Rev. 1993, 93, 2207. (b) Yus, M.; Gonzal
́
ez-Gom
́
ez, J. C.;
Foubelo, F. Chem. Rev. 2013, 113, 5595.
(2) For selected reviews on olefin metathesis, see: (a) Handbook of
Metathesis; Grubbs, R. H., Wenzel, A. G., O’Leary, D. J., Khosravi, E.,
Eds.; Wiley-VCH: Weinheim, 2005. (b) Hoveyda, A. H.; Malcolmson, S.
J.; Meek, S. J.; Zhugralin, A. R. Angew. Chem., Int. Ed. 2010, 49, 34.
(c) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005,
44, 4490.
(3) For a book Chapter on alkylation of enols and enolates, see: Stoltz,
B. M.; Bennett, N. B.; Duquette, D. C.; Goldberg, A. F. G.; Liu, Y.;
Loewinger, M. B.; Reeves, C. M. In Comprehensive Organic Synthesis, 2nd
ed.; Knochel, P., Molander, G. A., Eds.; Elsevier: Amsterdam, 2014; Vol.
3, pp 1−55.
(4) For selected reviews on π-allylpalladium chemistry, see: (a) Tsuji, J.
Palladium Reagents and Catalysts; Wiley: Chichester, 2004; Chapter 4,
pp 431−517. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103,
2921.
(5) For pioneering works on the allylation of nonacidic C(sp3)−H
bonds, see: (a) Xiang, J.; Evarts, J.; Rivkin, A.; Curran, D. P.; Fuchs, P. L.
Tetrahedron Lett. 1998, 39, 4163. (b) Tanko, J. M.; Sadeghipour, M.
Angew. Chem., Int. Ed. 1999, 38, 159. (c) Zhang, J.; Li, Y.; Zhang, F.; Hu,
C.; Chen, Y. Angew. Chem., Int. Ed. 2016, 55, 1872.
(16) For a UVspectrum of PT, see: Baxter, I.; Cameron, D. W.; Titman,
R. B. J. Chem. Soc. C 1971, 1253.
(17) For the structure of the anion radical of PT, see: (a) Forkner, M.
W.; Miller, L. L.; Rak, S. F. Synth. Met. 1990, 36, 65. (b) Almlof, J. E.;
̈
(6) For recent representative reports on the C(sp3)−H functionaliza-
tion using a tungsten photocatalyst, see: (a) Ravelli, D.; Protti, S.;
Fagnoni, M. Acc. Chem. Res. 2016, 49, 2232. (b) Murphy, J. J.; Bastida,
D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016, 532, 218.
(c) Yamada, K.; Okada, M.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu,
I. Org. Lett. 2015, 17, 1292. (d) Okada, M.; Fukuyama, T.; Yamada, K.;
Ryu, I.; Ravelli, D.; Fagnoni, M. Chem. Sci. 2014, 5, 2893.
Feyereisen, M. W.; Jozefiak, T. H.; Miller, L. L. J. Am. Chem. Soc. 1990,
112, 1206.
(18) Although the possibility of a radical chain mechanism cannot be
exclusively ruled out at present, we confirmed that the allylation took
details) and that the recovery of a majority of PT was observed after the
reaction. More examinations are required to account for the precise
reaction mechanism, see: Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015,
6, 5426.
(19) Pioneering work on the photoinduced alkylation of isopropanol:
Schenck, G. O.; Koltzenburg, G.; Grossmann, H. Angew. Chem. 1957,
69, 177.
(7) (a) Kamijo, S.; Hoshikawa, T.; Inoue, M. Tetrahedron Lett. 2011,
52, 2885. (b) Kamijo, S.; Hoshikawa, T.; Inoue, M. Org. Lett. 2011, 13,
5928. (c) Hoshikawa, T.; Yoshioka, S.; Kamijo, S.; Inoue, M. Synthesis
2013, 45, 874. (d) Hoshikawa, T.; Kamijo, S.; Inoue, M. Org. Biomol.
Chem. 2013, 11, 164. (e) Amaoka, Y.; Nagatomo, M.; Watanabe, M.;
Tao, K.; Kamijo, S.; Inoue, M. Chem. Sci. 2014, 5, 4339. (f) Kamijo, S.;
Hirota, M.; Tao, K.; Watanabe, M.; Murafuji, T. Tetrahedron Lett. 2014,
55, 5551. (g) Kamijo, S.; Tao, K.; Takao, G.; Murooka, H.; Murafuji, T.
Tetrahedron Lett. 2015, 56, 1904. (h) Kamijo, S.; Watanabe, M.; Kamijo,
K.; Tao, K.; Murafuji, T. Synthesis 2016, 48, 115. (i) Kamijo, S.; Takao,
G.; Kamijo, K.; Hirota, M.; Tao, K.; Murafuji, T. Angew. Chem., Int. Ed.
2016, 55, 9695. (j) Kamijo, S.; Takao, G.; Kamijo, K.; Tsuno, T.;
Ishiguro, K.; Murafuji, T. Org. Lett. 2016, 18, 4912.
(20) Coldham, I.; Leonori, D. J. Org. Chem. 2010, 75, 4069.
(8) For related examples of C(sp3)−H functionalization using a
photoexcited ketone, see: (a) Hoshikawa, T.; Inoue, M. Chem. Sci. 2013,
4, 3118. (b) Nagatomo, M.; Yoshioka, S.; Inoue, M. Chem. - Asian J.
2015, 10, 120. (c) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013,
D
Org. Lett. XXXX, XXX, XXX−XXX