H. Yi et al. / Tetrahedron Letters 46 (2005) 5665–5668
5667
Table 5. Enones epoxidized using the (L-Leu)nAMPSi catalysta
(d) Banfi, S.; Colonna, S.; Molinari, H. Tetrahedron 1984,
39, 5207–5211.
2. Porter, M. J.; Skidmore, J. Chem. Commun. 2000, 1215–
1225.
3. Sylvia, B.; Karl, H. D.; Hans, P. K.; Stanley, M. R.; Jo¨rg,
S.; John, S.; Giampaolo, Z. Org. Process. Res. Dev. 2003,
7, 509–513.
4. Lauret, C.; Roberts, S. M. Aldrichim. Acta 2002, 35, 47–
51.
5. Geller, T. P.; Roberts, S. M. J. Chem. Soc., Perkin Trans.
1 1999, 1397–1398.
6. Porter, M. J.; Roberts, S. M.; Skidmore, J. Bioorg. Med.
Chem. 1999, 7, 2145–2156.
7. Falck, J. R.; Bhatt, R. K.; Reddy, K. M.; Ye, J. Synlett
1997, 481–482.
8. Allen, J. V.; Bergeron, S.; Griffiths, M. J.; Mukherjee, S.;
Roberts, S. M. J. Chem. Soc., Perkin Trans. 1 1998, 3171–
3179.
O
O
(L-Leu)nAMPSi
Oxidant
O
R1
Entry
R2
R1
R2
ee (%)
R1
Ph
R2
Yield (%)
1
2
3
4
5
6
7
8
Ph
Ph
94
80
80
54
50
90
70
88
93
82
92
70
73
92
80
93
p-MeOC6H4
p-O2NC6H4
o-MeOC6H4
o-EtOC6H4
p-ClC6H4
Ph
Ph
Ph
Ph
Ph
o-MeOC6H4
p-ClC6H4
Ph
a 1.0 mmol substrate, 0.06 mmol catalyst, 1.6 mmol sodium percar-
bonate, 2 mLDME, 2 mL H2O, ambient temperature, 2 h.
9. Ray, P. C.; Roberts, S. M. Tetrahedron Lett. 1999, 40,
1779–1782.
10. Ebrahim, S.; Wills, M. Tetrahedron: Asymmetry 1997, 8,
3163–3173.
11. Pu, L. Tetrahedron: Asymmetry 1998, 9, 1457–1477.
12. Allen, J. V.; Roberts, S. M.; Williamson, N. M. Adv.
Biochem. Biotechnol. 1998, 63, 125–144.
epoxidation decreased with the recycling. Indeed, after 10
recycles a,b-epoxyketone was obtained in 83% yield in
80% ee under a constant condition (Table 4). The average
loss of catalyst amounted to ca. 1.4% per run.
The epoxidation of various (E)-a,b-unsaturated ketones
was examined using the silica-grafted poly(L-leucine).
All of the olefins tested afforded the corresponding
epoxides in good yields and enantioselectivities (Table
5). Electron-donating groups, such as MeO, decreased
the enantio-selectivity of the asymmetric epoxidation
significantly while electron-withdrawing ones showed
little effects (Table 5, entries 2, 3, and 6). Ortho-substit-
utents, namely steric hindrance, lowered both the yields
and enantioselectivities of the reactions catalyzed by the
silica-grafted poly-(L)-leucine (Table 5, entries 4, 5, and
7).
13. Itsuno, S.; Sakakura, M.; Ito, K. J. Org. Chem. 1990, 55,
6047–6049.
14. Cappi, M. W.; Chen, W. P.; Flood, R. W.; Liao, Y. W.;
Roberts, S. M.; Skidmore, J.; Smith, J. A.; Williamson, N.
M. Chem. Commun. 1998, 1159–1160.
15. Dhanda, A.; Drauz, K. H.; Geller, T.; Roberts, S. M.
Chirality 2000, 12, 313–317.
16. Carde, L.; Davies, H.; Geller, T. P.; Roberts, S. M.
Tetrahedron Lett. 1999, 40, 5421–5424.
17. Choong, E. S.; Sang-gi, L. Chem. Rev. 2002, 102, 3495–
3524.
18. Enrico, A.; Carlo, C.; Giovanni, M.; Paolo, V. J. Chem.
Soc., Perkin Trans. 1 1989, 105–107.
19. Anne, C.; Gilbert, R.; Daniel, B. J. Org. Chem. 1997, 62,
749–751.
In conclusion, we have developed a silica-grafted poly-
(L)-leucine that could act as an efficient chiral catalyst
in the epoxidation of (E)-a,b-unsaturated aromatic
ketones with the percarbonate protocol to yield optically
active epoxy ketones in high enantioselectivities up to
93% ee. Separation and recovery of the poly-(L)-leucine
catalyst has been remarkably improved in this system,
and the catalyst could be reused without a significant
loss of activity. The good substrate compatibility would
enable the synthesis of a variety of optically active epoxy
ketones.
20. Synthesis of silica-grafted poly(L-leucine) catalysts. The
AMPSi 3.2 g (0.3 mmol of NH2/g) was dried under
vacuum (0.5mmHg) at 110 °C for 2 h prior to use. The
AMPSi and L-leucine NCA (5.0 g, 32 mmol) were mixed
in anhydrous tetrahydrofuran (80 mL) at room tempera-
ture for 72 h with stirring. After stirring, the solid was
filtered, thoroughly washed with methanol (60 mL, stir-
ring 6 h) and diethyl ether (60 mL, stirring overnight) and
dried under vacuum at room temperature (6.6 g). IR
(cmÀ1) 3314, 2962, 2874, 1660, 1470, 1440, 1219, 1086,
963, 799, 465; 13C CP-MAS d (ppm) = 8.8, 20.5, 24.3, 39.4,
43.0, 55.9, 175.9. Anal. Calcd for C183H338N31O30@SiO2:
C, 32.67; N, 6.45. Found: C, 32.04; N, 6.21.
21. (a) Typical epoxidation procedure under a hydrous
condition:
Acknowledgments
To a solution of the enone (0.5 mmol) in DME (1 mL) and
H2O (1 mL) was added percarbonate (0.76 mmol) and the
grafting poly(L-leucine)-silica (0.04 mmol). The mixture
was stirred for 6 h at room temperature until the reaction
was completed (TLC). The catalyst was removed by rapid
filtration and washed with ethyl acetate. The combined
organic fractions were evaporated in vacuo to yield crude
epoxide;
We thank Shanghai Science and Technology Council
(04JC14032) and National Science Foundation of China
(20233030) for financial supports.
References and notes
´
1. (a) Julia, S.; Masana, J.; Vega, J. C. Angew. Chem., Int.
Ed. Engl. 1980, 19, 929–931; (b) Julia, S.; Guixer, J.;
(b) Typical epoxidation procedures under an anhydrous
condition:
´
Masana, J.; Rocas, J.; Colonna, S.; Annuziata, R.;
Molinari, H. J. Chem. Soc., Perkin Trans. 1 1982, 1317–
´
1324; (c) Colonna, S.; Molinari, H.; Banfi, S.; Julia, S.;
Masana, J.; Alvarez, A. Tetrahedron 1983, 39, 1635–1641;
A solution of the substrate (1.2 mmol) in anhydrous THF
were added urea–hydrogen peroxide (1.5 mmol), DBU
(1.5 mmol) and the grafting poly(L-leucine)-silica
(0.06 mmol). The mixture was stirred at room temperature