2194
X. Ma et al. / Tetrahedron Letters 52 (2011) 2192–2194
References and notes
1. Garlaschelli, L.; Magistrali, E.; Vidari, G.; Zuffardi, O. Tetrahedron Lett. 1995, 36,
5633.
2. Garlaschelli, L.; Vidari, G.; Vita-Finzi, P. Tetrahedron Lett. 1996, 37, 6223.
3. (a) Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Org. Lett. 2009, 11, 4290; (b)
Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Aust. J. Chem. 2009, 62, 1639; (c)
Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Acta Crystallogr., Sect. E: Struct. Rep.
Online 2010, 66, o342.
Scheme 4.
4. For a very useful introduction to this class of compound, see: Marco-Contelles,
J.; Molina, M. T.; Anjum, S. Chem. Rev. 2004, 104, 2857.
5. For reviews on methods for generating compounds such as 7 by microbial
dihydroxylation of the corresponding aromatics, as well as the synthetic
applications of these metabolites, see: (a) Hudlicky, T.; Gonzalez, D.; Gibson, D.
T. Aldrichim. Acta 1999, 32, 35; (b) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.;
Jolliffe, K. A.; McLeod, M. D.; McRae, K. J.; Stewart, S. G.; Vögtle, M. Pure Appl.
Chem. 2003, 75, 223; (c) Johnson, R. A. Org. React. 2004, 63, 117; (d) Hudlicky,
T.; Reed, J. W. Synlett 2009, 685.
6. Dodge, J. A.; Trujillo, J. I.; Presnell, M. J. Org. Chem. 1994, 59, 234.
7. (a) Kamikubo, T.; Ogasawara, K. Chem. Commun. 1996, 1679; (b) Graham, A. E.;
Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 1997, 1087; (c) Miller, M. W.;
Johnson, C. R. J. Org. Chem. 1997, 62, 1582.
base-promoted isomerization or dimerization processes regardless
of the concentration of the substrate used. In contrast, the model
system 22, which is readily obtained in 95% yield by oxidation of
alcohol 10 with DMP (Scheme 4), reacted with acetic acid in the
presence of 1.1 mol equiv of Ti(OPr-i)4 to give the diacetate 2315
(26%) as the only characterizable product of reaction. Under the
same conditions, compound 6 was consumed but no identifiable
products could be isolated from the reaction mixture.
The origin of the divergent reactivities of compounds 6 and 22
remains unclear at the present time. There are various explana-
tions for our failure to observe the conversion of the former com-
pound into any of tricholomenyns B–E. Thus, for example, it is
possible that epoxy-acid 6 is not a biogenetic precursor to these
natural products or that the relevant conversions (of 6) are en-
zyme-mediated processes unable to be mimicked under strictly
chemical (i.e., non-biological) conditions.
8. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
9. For an example of a related oxidation, see: Banwell, M. G.; Jury, J. C. Org. Prep.
Proced. Int. 2004, 36, 87.
10. Bal, B. S.; Childers, W. E., Jr.; Pinnick, H. W. Tetrahedron 1981, 37, 2091.
11. Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
12. Selected spectral data for compound 6: [
a
]
D = À213.4 (c 0.5, CHCl3); 1H NMR
(CDCl3, 500 MHz) d 6.87 (m, 1H), 6.77 (dd, J = 5.5 and 2.5 Hz, 1H), 5.82 (m, 1H),
5.47 (d, J = 1.0 Hz, 1H), 5.38 (d, J = 1.0 Hz, 1H), 3.75 (m, 1H) 3.59 (dd, J = 4.0 and
1.5 Hz, 1H), 2.47 (dd, J = 14.0 and 7.0 Hz, 2H), 2.35 (br t, J = 7.0 Hz, 2H), 2.13 (s,
3H), 1.86 (d, J = 1.0 Hz, 3H) (signal due to carboxylic acid proton not observed);
13C NMR (CDCl3, 125 MHz) d 189.5 (C), 173.5 (C), 169.8 (C), 143.5 (CH), 140.8
(CH), 129.6 (CH2 or C), 128.1 (C), 124.9 (C), 124.4 (CH2 or C), 95.2 (C), 82.7 (C),
64.2 (CH), 54.9 (CH), 53.0 (CH), 35.7 (CH2), 27.5 (CH2), 20.7 (CH3), 12.2 (CH3); IR
mmax 2928, 2204, 1757, 1740, 1698, 1643, 1422, 1371, 1289, 1218, 1024,
910 cmÀ1; MS m/z (ESI, Àve ionization) 329 [(MÀH+)À, 19%], 287 (99), 243
(100), 225 (27); HRMS Found: (MÀH+)À, 329.1021. C18H17O6 requires (MÀH+)À,
329.1025.
Acknowledgements
We thank the Australian Research Council and Institute of Ad-
vanced Studies for generous financial support. J.C.J. is the grateful
recipient of an ANU Ph.D. Scholarship.
13. Bhalerao, U. T.; Rapoport, H. J. Am. Chem. Soc. 1971, 93, 4835.
14. Arigoni, D.; Vasella, A.; Sharpless, K. B.; Jensen, H. P. J. Am. Chem. Soc. 1973, 95,
7917.
15. Selected spectral data for compound 23: [
a
]
D = À51.0 (c 0.5, CHCl3); 1H NMR
Supplementary data
(CDCl3, 500 MHz) d 7.49 (d, J = 2.5 Hz, 1H), 5.66 (dd, J = 8.5 and 2.5 Hz, 1H), 5.44
(d, J = 8.5 Hz, 1H), 4.20 (m, 1H), 2.72 (br s, 1H), 2.24 (s, 3H), 2.20 (s, 3H); 13C
NMR (CDCl3, 125 MHz) d 186.2 (C), 170.5 (C), 170.0 (C), 153.6 (CH), 102.1 (C),
75.0 (CH), 74.5 (CH), 73.0 (CH), 20.9 (CH3), 20.7 (CH3); IR mmax 3468, 2923,
2852, 1752, 1710, 1373, 1223, 1071, 1036, 800, 737 cmÀ1; MS m/z (EI, 70 eV)
Supplementary data (including experimental procedures and
product characterization for compounds 6, 10 and 15–23) associ-
ated with this article can be found, in the online version, at
354 (M+Å, 5%), 312 (20), 252 (100), 223 (16), 210 (32); HRMS Found: M+Å
353.9597. C10H11IO6 requires M+Å, 353.9600.
,